User prompt
Agrégale IA al auto enemigo
User prompt
Haz que aparezcan entre 3 a 6 autos
User prompt
Haz que aparezcan entre 3 a 7 autos
User prompt
Mejora más la lógica de choque, algunas veces el auto sale disparado en la dirección equivocada
User prompt
Agrega un frenado más suave al auto chocado
User prompt
Agrega un frenado por fricción l auto chocado alargando su frenado y haciéndolo más suave
User prompt
Al cochar con poca velocidad un auto haz que aparezca como si se empujar y al chocar muy rápido exagera más el empuje
User prompt
Haz que al chocar yendo muy rápido la perdida el reinicio de aceleración sea mayor
User prompt
Haz que el auto chocado salga disparado en la dirección contraria al choque equivalente a la velocidad con la que se haya chocado
User prompt
Arregla el error que hace que al chocar no se reinicia el momento de acelerar como al iniciar la conducción
User prompt
Haz que al chocar la perdida de velocidad y aceleración sea equivalente a la velocidad actual haciendo más natural y realista el choque
User prompt
Haz que al chocar la perdida de velocidad y aceleración sea equivalente a la velocidad actual haciendo más natural y realista el choque
User prompt
Agrega la lógica de coque por epso con la pared
User prompt
Mejora la lógica de empuje haciéndolo más natural
User prompt
Haz que se puedan empujar los autos
User prompt
Haz que al chocar muy rápido contra un auto el auto pierda aceleración
User prompt
El auto jugador rebota mucho al chocar, hazlo más narural
User prompt
El auto rebota mucho al chocar, hazlo más narural
User prompt
Arregla la colisión entre los costados, el área de choque es muy grande
User prompt
Agrega entre 4 a 7 autos
User prompt
Haz que los autos aparezcan en posiciones random mirando al centro
User prompt
Haz un poco más exagerado los choques
User prompt
Agrega peso a los autos para mejorarla lógica de choques
User prompt
Haz que al chocar un auto enemigo este será empujado en la dirección contraria donde se chocó. Mientras rápido se va más lejos irá. Agrega desaseleracion al choque (no tweet plugin)
User prompt
Haz que al chocar un auto enemigo este será empujado en la dirección contraria donde se chocó. Mientras más rápido se va más lejos irá. Agrega desaceleración al choque ↪💡 Consider importing and using the following plugins: @upit/tween.v1
/**** * Plugins ****/ var tween = LK.import("@upit/tween.v1"); /**** * Classes ****/ var EnemyCar = Container.expand(function () { var self = Container.call(this); var enemyCarGraphics = self.attachAsset('Cars', { anchorX: 0.5, anchorY: 0.5 }); // Assign random color (excluding red) var enemyColors = [0x0066ff, // Blue 0x00ff66, // Green 0xffff00, // Yellow 0xff8800, // Orange 0x8800ff, // Purple 0x00ffff, // Cyan 0xff00ff, // Magenta 0x888888, // Gray 0xffffff // White ]; var randomColorIndex = Math.floor(Math.random() * enemyColors.length); enemyCarGraphics.tint = enemyColors[randomColorIndex]; // Basic properties for enemy car (no logic yet) self.velocityX = 0; self.velocityY = 0; self.rotation = 0; return self; }); var Particle = Container.expand(function () { var self = Container.call(this); // Random particle size between 10.8-25.2 pixels (20% smaller than original) var particleSize = 10.8 + Math.random() * 14.4; var particleGraphics = self.attachAsset('ParticulasVel', { anchorX: 0.5, anchorY: 0.5, scaleX: particleSize / 30, scaleY: particleSize / 30 }); // Random initial properties (20% smaller velocities) self.velocityX = (Math.random() - 0.5) * 3.2; self.velocityY = Math.random() * 2.4 + 0.8; self.lifespan = 20 + Math.random() * 20; // Reduced lifespan: 0.33-0.67 seconds at 60fps self.age = 0; self.update = function () { // Update position self.x += self.velocityX; self.y += self.velocityY; // Age particle self.age++; // Fade out over time var fadeProgress = self.age / self.lifespan; particleGraphics.alpha = 1 - fadeProgress; // Scale down over time var scaleProgress = 1 - fadeProgress * 0.5; particleGraphics.scaleX = particleSize / 30 * scaleProgress; particleGraphics.scaleY = particleSize / 30 * scaleProgress; // Apply gravity and air resistance (20% reduced for smaller scale) self.velocityY += 0.08; // Reduced gravity self.velocityX *= 0.984; // Slightly less air resistance self.velocityY *= 0.984; }; return self; }); /**** * Initialize Game ****/ var game = new LK.Game({ backgroundColor: 0x000000 }); /**** * Game Code ****/ // Create gameplay background - 4/5 of screen height (top portion) 6; var gameplayBackground = game.attachAsset('gameplayBg', { x: 0, y: 0, anchorX: 0, anchorY: 0 }); // Create carPlayer character on top of gameplayBackground var carPlayer = gameplayBackground.attachAsset('CarPlayer', { x: 1024, // Center horizontally y: 1800, // Position in lower portion of gameplay area anchorX: 0.5, anchorY: 0.5 }); // Create enemy car in gameplay area var enemyCar = new EnemyCar(); enemyCar.x = 500; enemyCar.y = 500; gameplayBackground.addChild(enemyCar); // Create UI background - 1/5 of screen height (bottom portion) var uiBackground = game.attachAsset('uiBg', { x: 0, y: 2186, anchorX: 0, anchorY: 0 }); // Create speed display text var speedText = new Text2('Speed: 0', { size: 60, fill: 0x000000 }); speedText.anchor.set(0, 0.5); speedText.x = 50; speedText.y = 2459; // Center vertically in UI area game.addChild(speedText); // Create joystickBG centered in UI background var joystickBG = uiBackground.attachAsset('JoystickBG', { x: 1024, // Center horizontally in UI y: 273, // Center vertically in UI (546/2 = 273) anchorX: 0.5, anchorY: 0.5 }); // Create point object that will follow touch position var point = null; // Create JoystickPoinr that will follow point position smoothly var joystickPoinr = game.attachAsset('JoystickPoinr', { x: 1024, y: 2459, anchorX: 0.5, anchorY: 0.5 }); // Variables for smooth movement var targetX = 1024; var targetY = 2459; var smoothSpeed = 0.2; // Variables for smooth rotation var targetRotation = 0; var baseRotationSpeed = 0.052; // Variables for realistic car physics var currentVelocity = 0; var acceleration = 0.16; var deceleration = 0.44; var maxSpeed = 15.36; // Variables for drift physics var velocityX = 0; var velocityY = 0; var driftFactor = 0.85; // How much momentum is retained (lower = more drift) var gripFactor = 0.3; // How quickly car aligns with direction (lower = more drift) // Handle touch down - create and show point game.down = function (x, y, obj) { // Create point at touch position point = game.attachAsset('Puntero', { x: x, y: y, anchorX: 0.5, anchorY: 0.5 }); }; // Handle touch move - update point position game.move = function (x, y, obj) { if (point) { point.x = x; point.y = y; // Calculate joystickBG world position var joystickWorldX = joystickBG.x + uiBackground.x; var joystickWorldY = joystickBG.y + uiBackground.y; // Calculate distance from joystick center var deltaX = x - joystickWorldX; var deltaY = y - joystickWorldY; var distance = Math.sqrt(deltaX * deltaX + deltaY * deltaY); var maxRadius = joystickBG.width / 2; // Limit movement to joystick radius if (distance > maxRadius) { var angle = Math.atan2(deltaY, deltaX); deltaX = Math.cos(angle) * maxRadius; deltaY = Math.sin(angle) * maxRadius; } // Update target position for smooth movement (constrained) targetX = joystickWorldX + deltaX; targetY = joystickWorldY + deltaY; } }; // Handle touch up - remove point game.up = function (x, y, obj) { if (point) { point.destroy(); point = null; // Reset target position to joystick center var joystickWorldX = joystickBG.x + uiBackground.x; var joystickWorldY = joystickBG.y + uiBackground.y; targetX = joystickWorldX; targetY = joystickWorldY; } }; // Update function for smooth movement game.update = function () { // Smoothly move JoystickPoinr towards target position var deltaX = targetX - joystickPoinr.x; var deltaY = targetY - joystickPoinr.y; joystickPoinr.x += deltaX * smoothSpeed; joystickPoinr.y += deltaY * smoothSpeed; // Double-check that joystickPoinr stays within bounds var joystickWorldX = joystickBG.x + uiBackground.x; var joystickWorldY = joystickBG.y + uiBackground.y; var currentDeltaX = joystickPoinr.x - joystickWorldX; var currentDeltaY = joystickPoinr.y - joystickWorldY; var currentDistance = Math.sqrt(currentDeltaX * currentDeltaX + currentDeltaY * currentDeltaY); var maxRadius = joystickBG.width / 2; if (currentDistance > maxRadius) { var angle = Math.atan2(currentDeltaY, currentDeltaX); joystickPoinr.x = joystickWorldX + Math.cos(angle) * maxRadius; joystickPoinr.y = joystickWorldY + Math.sin(angle) * maxRadius; } // Update car rotation based on joystick position var joystickOffsetX = joystickPoinr.x - joystickWorldX; var joystickOffsetY = joystickPoinr.y - joystickWorldY; var joystickDistance = Math.sqrt(joystickOffsetX * joystickOffsetX + joystickOffsetY * joystickOffsetY); // Calculate power based on distance from center (0 to 1) var power = Math.min(joystickDistance / maxRadius, 1); // Only rotate if joystick is moved significantly from center if (joystickDistance > 10) { var joystickAngle = Math.atan2(joystickOffsetX, -joystickOffsetY); targetRotation = joystickAngle; } // Smoothly interpolate car rotation towards target var rotationDelta = targetRotation - carPlayer.rotation; // Handle angle wrapping for shortest rotation path while (rotationDelta > Math.PI) { rotationDelta -= 2 * Math.PI; } while (rotationDelta < -Math.PI) { rotationDelta += 2 * Math.PI; } // Calculate rotation speed based on current velocity (slower speed = much slower turning) var speedRatio = Math.sqrt(velocityX * velocityX + velocityY * velocityY) / maxSpeed; var dynamicRotationSpeed = baseRotationSpeed * Math.max(0.1, speedRatio); // Minimum 10% rotation speed carPlayer.rotation += rotationDelta * dynamicRotationSpeed; // Calculate target velocity based on joystick power var targetVelocity = maxSpeed * power; // Apply smooth velocity transitions with exponential interpolation if (power > 0.1) { // Accelerating - smooth exponential approach to target velocity var velocityDiff = targetVelocity - currentVelocity; var accelerationRate = 0.004; // Smooth acceleration rate (20% slower for smaller car) currentVelocity += velocityDiff * accelerationRate; } else { // Decelerating when joystick is near center - smooth exponential decay var decelerationRate = 0.048; // Smooth deceleration rate (20% slower for smaller car) currentVelocity *= 1 - decelerationRate; if (Math.abs(currentVelocity) < 0.1) { currentVelocity = 0; } } // Limit velocity to max speed currentVelocity = Math.min(currentVelocity, maxSpeed); // Calculate intended movement direction based on car rotation and current velocity var intendedMoveX = Math.sin(carPlayer.rotation) * currentVelocity; var intendedMoveY = -Math.cos(carPlayer.rotation) * currentVelocity; // Calculate turning friction based on dynamic rotation speed var rotationFriction = Math.abs(rotationDelta * dynamicRotationSpeed) * 0.8; // Reduced friction intensity for smoother feel var frictionMultiplier = Math.max(0.85, 1 - rotationFriction); // Less velocity reduction when turning (min 0.85 for more natural feel) // Apply drift physics - blend current momentum with intended direction velocityX = velocityX * driftFactor + intendedMoveX * gripFactor; velocityY = velocityY * driftFactor + intendedMoveY * gripFactor; // Apply turning friction to reduce velocity when steering velocityX *= frictionMultiplier; velocityY *= frictionMultiplier; // Apply some base deceleration to drift momentum velocityX *= 0.98; velocityY *= 0.98; // Update car position using drift momentum carPlayer.x += velocityX; carPlayer.y += velocityY; // Keep car within gameplay area bounds with realistic collision physics var halfCarWidth = 16; // CarPlayer width is 32, so half is 16 var halfCarHeight = 24; // CarPlayer height is 47.36, so half is ~24 // Calculate current speed for impact calculations var currentSpeed = Math.sqrt(velocityX * velocityX + velocityY * velocityY); var impactThreshold = 2; // Minimum speed to trigger impact effects // Realistic collision physics with energy loss and proper angles if (carPlayer.x < halfCarWidth) { carPlayer.x = halfCarWidth; // Calculate impact intensity based on perpendicular velocity component var impactVelocity = Math.abs(velocityX); var energyLoss = 0.4 + impactVelocity / maxSpeed * 0.3; // More energy loss at higher speeds // Realistic bounce with energy conservation velocityX = -velocityX * (1 - energyLoss); velocityY *= 0.8; // Friction reduces parallel velocity component // Visual feedback for significant impacts if (impactVelocity > impactThreshold) { LK.effects.flashObject(carPlayer, 0xff4444, 200); } } if (carPlayer.x > 2048 - halfCarWidth) { carPlayer.x = 2048 - halfCarWidth; // Calculate impact intensity based on perpendicular velocity component var impactVelocity = Math.abs(velocityX); var energyLoss = 0.4 + impactVelocity / maxSpeed * 0.3; // More energy loss at higher speeds // Realistic bounce with energy conservation velocityX = -velocityX * (1 - energyLoss); velocityY *= 0.8; // Friction reduces parallel velocity component // Visual feedback for significant impacts if (impactVelocity > impactThreshold) { LK.effects.flashObject(carPlayer, 0xff4444, 200); } } if (carPlayer.y < halfCarHeight) { carPlayer.y = halfCarHeight; // Calculate impact intensity based on perpendicular velocity component var impactVelocity = Math.abs(velocityY); var energyLoss = 0.4 + impactVelocity / maxSpeed * 0.3; // More energy loss at higher speeds // Realistic bounce with energy conservation velocityY = -velocityY * (1 - energyLoss); velocityX *= 0.8; // Friction reduces parallel velocity component // Visual feedback for significant impacts if (impactVelocity > impactThreshold) { LK.effects.flashObject(carPlayer, 0xff4444, 200); } } if (carPlayer.y > 2186 - halfCarHeight) { carPlayer.y = 2186 - halfCarHeight; // Calculate impact intensity based on perpendicular velocity component var impactVelocity = Math.abs(velocityY); var energyLoss = 0.4 + impactVelocity / maxSpeed * 0.3; // More energy loss at higher speeds // Realistic bounce with energy conservation velocityY = -velocityY * (1 - energyLoss); velocityX *= 0.8; // Friction reduces parallel velocity component // Visual feedback for significant impacts if (impactVelocity > impactThreshold) { LK.effects.flashObject(carPlayer, 0xff4444, 200); } } // Particle system for car exhaust if (!game.particles) { game.particles = []; } // Generate particles proportional to current velocity (from very little to much) var totalSpeed = Math.sqrt(velocityX * velocityX + velocityY * velocityY); var speedRatio = totalSpeed / maxSpeed; // 0 to 1 ratio of current speed to max speed // Calculate particle generation frequency based on speed (more speed = more frequent particles) var particleFrequency = Math.max(1, Math.floor(8 - speedRatio * 6)); // From every 8 ticks (slow) to every 2 ticks (fast) if (speedRatio > 0.05 && LK.ticks % particleFrequency === 0) { // Only generate particles when moving at least 5% of max speed // Calculate particle spawn position further behind the car (20% closer for smaller car) var particleSpawnX = carPlayer.x - Math.sin(carPlayer.rotation) * 55; var particleSpawnY = carPlayer.y + Math.cos(carPlayer.rotation) * 55; // Create particles based on speed - more speed = more particles var particleCount = Math.max(1, Math.floor(speedRatio * 3)); // 1-3 particles based on speed ratio for (var p = 0; p < particleCount; p++) { // Create new particle var newParticle = new Particle(); newParticle.x = particleSpawnX + (Math.random() - 0.5) * 19.2; // 20% smaller spawn area newParticle.y = particleSpawnY + (Math.random() - 0.5) * 19.2; // Add velocity variation based on car movement (20% reduced for smaller scale) newParticle.velocityX += -velocityX * 0.12 + (Math.random() - 0.5) * 2.4; newParticle.velocityY += -velocityY * 0.12 + (Math.random() - 0.5) * 2.4; game.particles.push(newParticle); gameplayBackground.addChild(newParticle); // Tween particle color for variety var colors = [0xffffff, 0xcccccc, 0x999999, 0x666666]; var randomColor = colors[Math.floor(Math.random() * colors.length)]; tween(newParticle.children[0], { tint: randomColor }, { duration: 100 }); } } // Update and clean up particles for (var i = game.particles.length - 1; i >= 0; i--) { var particle = game.particles[i]; if (particle.age >= particle.lifespan) { particle.destroy(); game.particles.splice(i, 1); } } // Check collision between player car and enemy car if (!carPlayer.lastColliding) carPlayer.lastColliding = false; var currentColliding = carPlayer.intersects(enemyCar); if (!carPlayer.lastColliding && currentColliding) { // Collision just started - calculate collision physics var carSpeed = Math.sqrt(velocityX * velocityX + velocityY * velocityY); // Calculate collision direction (from player car to enemy car for pushing) var collisionDeltaX = enemyCar.x - carPlayer.x; var collisionDeltaY = enemyCar.y - carPlayer.y; var collisionDistance = Math.sqrt(collisionDeltaX * collisionDeltaX + collisionDeltaY * collisionDeltaY); // Normalize collision direction if (collisionDistance > 0) { collisionDeltaX /= collisionDistance; collisionDeltaY /= collisionDistance; } // Apply collision forces with energy loss var collisionForce = carSpeed * 1.2; // More force transfer based on speed var energyLoss = 0.4; // Less energy loss for more dramatic push // Separate cars to prevent overlap var separationDistance = 80; // Distance to separate cars enemyCar.x = carPlayer.x + collisionDeltaX * separationDistance; enemyCar.y = carPlayer.y + collisionDeltaY * separationDistance; // Apply collision physics to player car (reduced impact) velocityX *= 0.3; // Player loses most momentum velocityY *= 0.3; // Apply strong push force to enemy car based on player speed var pushForce = carSpeed * 1.5; // Stronger push the faster we're going enemyCar.velocityX = collisionDeltaX * pushForce; enemyCar.velocityY = collisionDeltaY * pushForce; // Add deceleration tween to enemy car for realistic physics tween(enemyCar, { velocityX: enemyCar.velocityX * 0.1, velocityY: enemyCar.velocityY * 0.1 }, { duration: 2000, easing: tween.easeOut }); // Visual feedback for collision LK.effects.flashObject(carPlayer, 0xff0000, 500); } // Update last collision state carPlayer.lastColliding = currentColliding; // Update enemy car physics (simple momentum with friction) enemyCar.x += enemyCar.velocityX; enemyCar.y += enemyCar.velocityY; // Apply stronger friction to enemy car for more realistic deceleration enemyCar.velocityX *= 0.88; enemyCar.velocityY *= 0.88; // Keep enemy car within bounds var enemyHalfWidth = 32; var enemyHalfHeight = 47; if (enemyCar.x < enemyHalfWidth) { enemyCar.x = enemyHalfWidth; enemyCar.velocityX = -enemyCar.velocityX * 0.6; } if (enemyCar.x > 2048 - enemyHalfWidth) { enemyCar.x = 2048 - enemyHalfWidth; enemyCar.velocityX = -enemyCar.velocityX * 0.6; } if (enemyCar.y < enemyHalfHeight) { enemyCar.y = enemyHalfHeight; enemyCar.velocityY = -enemyCar.velocityY * 0.6; } if (enemyCar.y > 2186 - enemyHalfHeight) { enemyCar.y = 2186 - enemyHalfHeight; enemyCar.velocityY = -enemyCar.velocityY * 0.6; } // Update speed display speedText.setText('Speed: ' + Math.round(totalSpeed)); };
/****
* Plugins
****/
var tween = LK.import("@upit/tween.v1");
/****
* Classes
****/
var EnemyCar = Container.expand(function () {
var self = Container.call(this);
var enemyCarGraphics = self.attachAsset('Cars', {
anchorX: 0.5,
anchorY: 0.5
});
// Assign random color (excluding red)
var enemyColors = [0x0066ff,
// Blue
0x00ff66,
// Green
0xffff00,
// Yellow
0xff8800,
// Orange
0x8800ff,
// Purple
0x00ffff,
// Cyan
0xff00ff,
// Magenta
0x888888,
// Gray
0xffffff // White
];
var randomColorIndex = Math.floor(Math.random() * enemyColors.length);
enemyCarGraphics.tint = enemyColors[randomColorIndex];
// Basic properties for enemy car (no logic yet)
self.velocityX = 0;
self.velocityY = 0;
self.rotation = 0;
return self;
});
var Particle = Container.expand(function () {
var self = Container.call(this);
// Random particle size between 10.8-25.2 pixels (20% smaller than original)
var particleSize = 10.8 + Math.random() * 14.4;
var particleGraphics = self.attachAsset('ParticulasVel', {
anchorX: 0.5,
anchorY: 0.5,
scaleX: particleSize / 30,
scaleY: particleSize / 30
});
// Random initial properties (20% smaller velocities)
self.velocityX = (Math.random() - 0.5) * 3.2;
self.velocityY = Math.random() * 2.4 + 0.8;
self.lifespan = 20 + Math.random() * 20; // Reduced lifespan: 0.33-0.67 seconds at 60fps
self.age = 0;
self.update = function () {
// Update position
self.x += self.velocityX;
self.y += self.velocityY;
// Age particle
self.age++;
// Fade out over time
var fadeProgress = self.age / self.lifespan;
particleGraphics.alpha = 1 - fadeProgress;
// Scale down over time
var scaleProgress = 1 - fadeProgress * 0.5;
particleGraphics.scaleX = particleSize / 30 * scaleProgress;
particleGraphics.scaleY = particleSize / 30 * scaleProgress;
// Apply gravity and air resistance (20% reduced for smaller scale)
self.velocityY += 0.08; // Reduced gravity
self.velocityX *= 0.984; // Slightly less air resistance
self.velocityY *= 0.984;
};
return self;
});
/****
* Initialize Game
****/
var game = new LK.Game({
backgroundColor: 0x000000
});
/****
* Game Code
****/
// Create gameplay background - 4/5 of screen height (top portion)
6;
var gameplayBackground = game.attachAsset('gameplayBg', {
x: 0,
y: 0,
anchorX: 0,
anchorY: 0
});
// Create carPlayer character on top of gameplayBackground
var carPlayer = gameplayBackground.attachAsset('CarPlayer', {
x: 1024,
// Center horizontally
y: 1800,
// Position in lower portion of gameplay area
anchorX: 0.5,
anchorY: 0.5
});
// Create enemy car in gameplay area
var enemyCar = new EnemyCar();
enemyCar.x = 500;
enemyCar.y = 500;
gameplayBackground.addChild(enemyCar);
// Create UI background - 1/5 of screen height (bottom portion)
var uiBackground = game.attachAsset('uiBg', {
x: 0,
y: 2186,
anchorX: 0,
anchorY: 0
});
// Create speed display text
var speedText = new Text2('Speed: 0', {
size: 60,
fill: 0x000000
});
speedText.anchor.set(0, 0.5);
speedText.x = 50;
speedText.y = 2459; // Center vertically in UI area
game.addChild(speedText);
// Create joystickBG centered in UI background
var joystickBG = uiBackground.attachAsset('JoystickBG', {
x: 1024,
// Center horizontally in UI
y: 273,
// Center vertically in UI (546/2 = 273)
anchorX: 0.5,
anchorY: 0.5
});
// Create point object that will follow touch position
var point = null;
// Create JoystickPoinr that will follow point position smoothly
var joystickPoinr = game.attachAsset('JoystickPoinr', {
x: 1024,
y: 2459,
anchorX: 0.5,
anchorY: 0.5
});
// Variables for smooth movement
var targetX = 1024;
var targetY = 2459;
var smoothSpeed = 0.2;
// Variables for smooth rotation
var targetRotation = 0;
var baseRotationSpeed = 0.052;
// Variables for realistic car physics
var currentVelocity = 0;
var acceleration = 0.16;
var deceleration = 0.44;
var maxSpeed = 15.36;
// Variables for drift physics
var velocityX = 0;
var velocityY = 0;
var driftFactor = 0.85; // How much momentum is retained (lower = more drift)
var gripFactor = 0.3; // How quickly car aligns with direction (lower = more drift)
// Handle touch down - create and show point
game.down = function (x, y, obj) {
// Create point at touch position
point = game.attachAsset('Puntero', {
x: x,
y: y,
anchorX: 0.5,
anchorY: 0.5
});
};
// Handle touch move - update point position
game.move = function (x, y, obj) {
if (point) {
point.x = x;
point.y = y;
// Calculate joystickBG world position
var joystickWorldX = joystickBG.x + uiBackground.x;
var joystickWorldY = joystickBG.y + uiBackground.y;
// Calculate distance from joystick center
var deltaX = x - joystickWorldX;
var deltaY = y - joystickWorldY;
var distance = Math.sqrt(deltaX * deltaX + deltaY * deltaY);
var maxRadius = joystickBG.width / 2;
// Limit movement to joystick radius
if (distance > maxRadius) {
var angle = Math.atan2(deltaY, deltaX);
deltaX = Math.cos(angle) * maxRadius;
deltaY = Math.sin(angle) * maxRadius;
}
// Update target position for smooth movement (constrained)
targetX = joystickWorldX + deltaX;
targetY = joystickWorldY + deltaY;
}
};
// Handle touch up - remove point
game.up = function (x, y, obj) {
if (point) {
point.destroy();
point = null;
// Reset target position to joystick center
var joystickWorldX = joystickBG.x + uiBackground.x;
var joystickWorldY = joystickBG.y + uiBackground.y;
targetX = joystickWorldX;
targetY = joystickWorldY;
}
};
// Update function for smooth movement
game.update = function () {
// Smoothly move JoystickPoinr towards target position
var deltaX = targetX - joystickPoinr.x;
var deltaY = targetY - joystickPoinr.y;
joystickPoinr.x += deltaX * smoothSpeed;
joystickPoinr.y += deltaY * smoothSpeed;
// Double-check that joystickPoinr stays within bounds
var joystickWorldX = joystickBG.x + uiBackground.x;
var joystickWorldY = joystickBG.y + uiBackground.y;
var currentDeltaX = joystickPoinr.x - joystickWorldX;
var currentDeltaY = joystickPoinr.y - joystickWorldY;
var currentDistance = Math.sqrt(currentDeltaX * currentDeltaX + currentDeltaY * currentDeltaY);
var maxRadius = joystickBG.width / 2;
if (currentDistance > maxRadius) {
var angle = Math.atan2(currentDeltaY, currentDeltaX);
joystickPoinr.x = joystickWorldX + Math.cos(angle) * maxRadius;
joystickPoinr.y = joystickWorldY + Math.sin(angle) * maxRadius;
}
// Update car rotation based on joystick position
var joystickOffsetX = joystickPoinr.x - joystickWorldX;
var joystickOffsetY = joystickPoinr.y - joystickWorldY;
var joystickDistance = Math.sqrt(joystickOffsetX * joystickOffsetX + joystickOffsetY * joystickOffsetY);
// Calculate power based on distance from center (0 to 1)
var power = Math.min(joystickDistance / maxRadius, 1);
// Only rotate if joystick is moved significantly from center
if (joystickDistance > 10) {
var joystickAngle = Math.atan2(joystickOffsetX, -joystickOffsetY);
targetRotation = joystickAngle;
}
// Smoothly interpolate car rotation towards target
var rotationDelta = targetRotation - carPlayer.rotation;
// Handle angle wrapping for shortest rotation path
while (rotationDelta > Math.PI) {
rotationDelta -= 2 * Math.PI;
}
while (rotationDelta < -Math.PI) {
rotationDelta += 2 * Math.PI;
}
// Calculate rotation speed based on current velocity (slower speed = much slower turning)
var speedRatio = Math.sqrt(velocityX * velocityX + velocityY * velocityY) / maxSpeed;
var dynamicRotationSpeed = baseRotationSpeed * Math.max(0.1, speedRatio); // Minimum 10% rotation speed
carPlayer.rotation += rotationDelta * dynamicRotationSpeed;
// Calculate target velocity based on joystick power
var targetVelocity = maxSpeed * power;
// Apply smooth velocity transitions with exponential interpolation
if (power > 0.1) {
// Accelerating - smooth exponential approach to target velocity
var velocityDiff = targetVelocity - currentVelocity;
var accelerationRate = 0.004; // Smooth acceleration rate (20% slower for smaller car)
currentVelocity += velocityDiff * accelerationRate;
} else {
// Decelerating when joystick is near center - smooth exponential decay
var decelerationRate = 0.048; // Smooth deceleration rate (20% slower for smaller car)
currentVelocity *= 1 - decelerationRate;
if (Math.abs(currentVelocity) < 0.1) {
currentVelocity = 0;
}
}
// Limit velocity to max speed
currentVelocity = Math.min(currentVelocity, maxSpeed);
// Calculate intended movement direction based on car rotation and current velocity
var intendedMoveX = Math.sin(carPlayer.rotation) * currentVelocity;
var intendedMoveY = -Math.cos(carPlayer.rotation) * currentVelocity;
// Calculate turning friction based on dynamic rotation speed
var rotationFriction = Math.abs(rotationDelta * dynamicRotationSpeed) * 0.8; // Reduced friction intensity for smoother feel
var frictionMultiplier = Math.max(0.85, 1 - rotationFriction); // Less velocity reduction when turning (min 0.85 for more natural feel)
// Apply drift physics - blend current momentum with intended direction
velocityX = velocityX * driftFactor + intendedMoveX * gripFactor;
velocityY = velocityY * driftFactor + intendedMoveY * gripFactor;
// Apply turning friction to reduce velocity when steering
velocityX *= frictionMultiplier;
velocityY *= frictionMultiplier;
// Apply some base deceleration to drift momentum
velocityX *= 0.98;
velocityY *= 0.98;
// Update car position using drift momentum
carPlayer.x += velocityX;
carPlayer.y += velocityY;
// Keep car within gameplay area bounds with realistic collision physics
var halfCarWidth = 16; // CarPlayer width is 32, so half is 16
var halfCarHeight = 24; // CarPlayer height is 47.36, so half is ~24
// Calculate current speed for impact calculations
var currentSpeed = Math.sqrt(velocityX * velocityX + velocityY * velocityY);
var impactThreshold = 2; // Minimum speed to trigger impact effects
// Realistic collision physics with energy loss and proper angles
if (carPlayer.x < halfCarWidth) {
carPlayer.x = halfCarWidth;
// Calculate impact intensity based on perpendicular velocity component
var impactVelocity = Math.abs(velocityX);
var energyLoss = 0.4 + impactVelocity / maxSpeed * 0.3; // More energy loss at higher speeds
// Realistic bounce with energy conservation
velocityX = -velocityX * (1 - energyLoss);
velocityY *= 0.8; // Friction reduces parallel velocity component
// Visual feedback for significant impacts
if (impactVelocity > impactThreshold) {
LK.effects.flashObject(carPlayer, 0xff4444, 200);
}
}
if (carPlayer.x > 2048 - halfCarWidth) {
carPlayer.x = 2048 - halfCarWidth;
// Calculate impact intensity based on perpendicular velocity component
var impactVelocity = Math.abs(velocityX);
var energyLoss = 0.4 + impactVelocity / maxSpeed * 0.3; // More energy loss at higher speeds
// Realistic bounce with energy conservation
velocityX = -velocityX * (1 - energyLoss);
velocityY *= 0.8; // Friction reduces parallel velocity component
// Visual feedback for significant impacts
if (impactVelocity > impactThreshold) {
LK.effects.flashObject(carPlayer, 0xff4444, 200);
}
}
if (carPlayer.y < halfCarHeight) {
carPlayer.y = halfCarHeight;
// Calculate impact intensity based on perpendicular velocity component
var impactVelocity = Math.abs(velocityY);
var energyLoss = 0.4 + impactVelocity / maxSpeed * 0.3; // More energy loss at higher speeds
// Realistic bounce with energy conservation
velocityY = -velocityY * (1 - energyLoss);
velocityX *= 0.8; // Friction reduces parallel velocity component
// Visual feedback for significant impacts
if (impactVelocity > impactThreshold) {
LK.effects.flashObject(carPlayer, 0xff4444, 200);
}
}
if (carPlayer.y > 2186 - halfCarHeight) {
carPlayer.y = 2186 - halfCarHeight;
// Calculate impact intensity based on perpendicular velocity component
var impactVelocity = Math.abs(velocityY);
var energyLoss = 0.4 + impactVelocity / maxSpeed * 0.3; // More energy loss at higher speeds
// Realistic bounce with energy conservation
velocityY = -velocityY * (1 - energyLoss);
velocityX *= 0.8; // Friction reduces parallel velocity component
// Visual feedback for significant impacts
if (impactVelocity > impactThreshold) {
LK.effects.flashObject(carPlayer, 0xff4444, 200);
}
}
// Particle system for car exhaust
if (!game.particles) {
game.particles = [];
}
// Generate particles proportional to current velocity (from very little to much)
var totalSpeed = Math.sqrt(velocityX * velocityX + velocityY * velocityY);
var speedRatio = totalSpeed / maxSpeed; // 0 to 1 ratio of current speed to max speed
// Calculate particle generation frequency based on speed (more speed = more frequent particles)
var particleFrequency = Math.max(1, Math.floor(8 - speedRatio * 6)); // From every 8 ticks (slow) to every 2 ticks (fast)
if (speedRatio > 0.05 && LK.ticks % particleFrequency === 0) {
// Only generate particles when moving at least 5% of max speed
// Calculate particle spawn position further behind the car (20% closer for smaller car)
var particleSpawnX = carPlayer.x - Math.sin(carPlayer.rotation) * 55;
var particleSpawnY = carPlayer.y + Math.cos(carPlayer.rotation) * 55;
// Create particles based on speed - more speed = more particles
var particleCount = Math.max(1, Math.floor(speedRatio * 3)); // 1-3 particles based on speed ratio
for (var p = 0; p < particleCount; p++) {
// Create new particle
var newParticle = new Particle();
newParticle.x = particleSpawnX + (Math.random() - 0.5) * 19.2; // 20% smaller spawn area
newParticle.y = particleSpawnY + (Math.random() - 0.5) * 19.2;
// Add velocity variation based on car movement (20% reduced for smaller scale)
newParticle.velocityX += -velocityX * 0.12 + (Math.random() - 0.5) * 2.4;
newParticle.velocityY += -velocityY * 0.12 + (Math.random() - 0.5) * 2.4;
game.particles.push(newParticle);
gameplayBackground.addChild(newParticle);
// Tween particle color for variety
var colors = [0xffffff, 0xcccccc, 0x999999, 0x666666];
var randomColor = colors[Math.floor(Math.random() * colors.length)];
tween(newParticle.children[0], {
tint: randomColor
}, {
duration: 100
});
}
}
// Update and clean up particles
for (var i = game.particles.length - 1; i >= 0; i--) {
var particle = game.particles[i];
if (particle.age >= particle.lifespan) {
particle.destroy();
game.particles.splice(i, 1);
}
}
// Check collision between player car and enemy car
if (!carPlayer.lastColliding) carPlayer.lastColliding = false;
var currentColliding = carPlayer.intersects(enemyCar);
if (!carPlayer.lastColliding && currentColliding) {
// Collision just started - calculate collision physics
var carSpeed = Math.sqrt(velocityX * velocityX + velocityY * velocityY);
// Calculate collision direction (from player car to enemy car for pushing)
var collisionDeltaX = enemyCar.x - carPlayer.x;
var collisionDeltaY = enemyCar.y - carPlayer.y;
var collisionDistance = Math.sqrt(collisionDeltaX * collisionDeltaX + collisionDeltaY * collisionDeltaY);
// Normalize collision direction
if (collisionDistance > 0) {
collisionDeltaX /= collisionDistance;
collisionDeltaY /= collisionDistance;
}
// Apply collision forces with energy loss
var collisionForce = carSpeed * 1.2; // More force transfer based on speed
var energyLoss = 0.4; // Less energy loss for more dramatic push
// Separate cars to prevent overlap
var separationDistance = 80; // Distance to separate cars
enemyCar.x = carPlayer.x + collisionDeltaX * separationDistance;
enemyCar.y = carPlayer.y + collisionDeltaY * separationDistance;
// Apply collision physics to player car (reduced impact)
velocityX *= 0.3; // Player loses most momentum
velocityY *= 0.3;
// Apply strong push force to enemy car based on player speed
var pushForce = carSpeed * 1.5; // Stronger push the faster we're going
enemyCar.velocityX = collisionDeltaX * pushForce;
enemyCar.velocityY = collisionDeltaY * pushForce;
// Add deceleration tween to enemy car for realistic physics
tween(enemyCar, {
velocityX: enemyCar.velocityX * 0.1,
velocityY: enemyCar.velocityY * 0.1
}, {
duration: 2000,
easing: tween.easeOut
});
// Visual feedback for collision
LK.effects.flashObject(carPlayer, 0xff0000, 500);
}
// Update last collision state
carPlayer.lastColliding = currentColliding;
// Update enemy car physics (simple momentum with friction)
enemyCar.x += enemyCar.velocityX;
enemyCar.y += enemyCar.velocityY;
// Apply stronger friction to enemy car for more realistic deceleration
enemyCar.velocityX *= 0.88;
enemyCar.velocityY *= 0.88;
// Keep enemy car within bounds
var enemyHalfWidth = 32;
var enemyHalfHeight = 47;
if (enemyCar.x < enemyHalfWidth) {
enemyCar.x = enemyHalfWidth;
enemyCar.velocityX = -enemyCar.velocityX * 0.6;
}
if (enemyCar.x > 2048 - enemyHalfWidth) {
enemyCar.x = 2048 - enemyHalfWidth;
enemyCar.velocityX = -enemyCar.velocityX * 0.6;
}
if (enemyCar.y < enemyHalfHeight) {
enemyCar.y = enemyHalfHeight;
enemyCar.velocityY = -enemyCar.velocityY * 0.6;
}
if (enemyCar.y > 2186 - enemyHalfHeight) {
enemyCar.y = 2186 - enemyHalfHeight;
enemyCar.velocityY = -enemyCar.velocityY * 0.6;
}
// Update speed display
speedText.setText('Speed: ' + Math.round(totalSpeed));
};