User prompt
Quita la información de errores
User prompt
Quita la información de errores
User prompt
Quita el mini mapa
User prompt
Sentra el texto de la puerta de salida
User prompt
Has que al tocar la puerta de salida la pantalla donde dice el texto sea comple oscuro y que el textos sean más anchas y de color blanco
User prompt
Has que al tocar la puerta de salida la pantalla donde dice el texto sea comple oscuro y que el textos sean más anchas y de color blanco
User prompt
Haz que las celdas que estén lejos del jugador se descarguen pero que no cambien su generación
User prompt
Has que un camino de habitaciones que simpre conecte con la puerta de salida pero que estás habitaciones conectadas se generen conforme el jugador se acerca a la puerta de salida
User prompt
Has que la habitación de puerta de salida esté simpre conectada a las habitaciones creadas proseduralmente
User prompt
Has que el sistema procedural simpre conecte una habitación generada aleatoriamente hacia un camino para que le jugador pueda acceder a la puerta de salida y has que si el sistema detecte que la habitación de salida es imposible de acceder haga un cambio de mapa para conectar esa habitación a otra
User prompt
Has que el sistema de creación procedural haga que simpre conecte la habitación de la puerta de salida con un cuarto o pasillo generado por el sistema de creación procedural
User prompt
Has que la puerta de salida evite a toda costa generarse junto al jugador
User prompt
Habla en español
User prompt
Has que la puerta de salida aparezca aleatoriamente pero que sea posible que el jugador interactúe con ella
User prompt
Has que allá caminos pre hechos hacia la puerta de salida
User prompt
El jugador aparece pegado al piso soluciona eso
User prompt
Has que el jugador aparezca en el medio de una habitación del borde del mapa
User prompt
Has que el jugador no pueda aparecer atravesando una pared
User prompt
haz que el jugador aparesca siempre en una de las 4 esquinas del mapa
User prompt
Has que cada cara visible de la puerta de salida sea tocable
User prompt
Has que la habitación con la puerta de salida este por lo mínimo 5 chucks de lejanía del jugador y has visto que la habitaciónes estén interconectadas una tras otra para que estén conectadas a la puerta de salida
User prompt
Has que la habitación de la puerta de salida siempre sea una habitación grande con por lo menos 2 entradas desde el jugador hasta la puerta de salida
User prompt
Has que el sistema procedural haga muchas entradas a otras habitaciones pero que no dejen de existir la sabría yo es sin salida
User prompt
has que la habitacion con la puerta de salida este mas lejos del jugador
User prompt
has que el sistema procedural simpre haga diferetes conecciones a otras avitaciones
/**** * Plugins ****/ var tween = LK.import("@upit/tween.v1"); var storage = LK.import("@upit/storage.v1"); /**** * Classes ****/ var CeilingTileRenderer = Container.expand(function () { var self = Container.call(this); self.tiles = []; // Generate ceiling tiles in safe positions (away from corners and walls) self.generateTiles = function () { for (var x = 2; x < worldGrid.width - 2; x++) { for (var y = 2; y < worldGrid.height - 2; y++) { // Only place tiles in open areas (not near walls or corners) if (!worldGrid.hasWallAt(x * worldGrid.cellSize, y * worldGrid.cellSize) && !self.isNearCorner(x, y) && self.isSafePosition(x, y)) { // Initialize tile before using its properties var tile = { worldX: x * worldGrid.cellSize + worldGrid.cellSize / 2, worldY: y * worldGrid.cellSize + worldGrid.cellSize / 2, sprite: null }; // Add a light in the middle of the room var light = self.addChild(LK.getAsset('smallLight', { anchorX: 0.5, anchorY: 0.5 })); light.x = tile.worldX; light.y = tile.worldY; light.visible = true; // Add ceilingTile as a light texture in random positions away from corners var ceilingTile = self.addChild(LK.getAsset('ceilingTile', { anchorX: 0.5, anchorY: 0.5 })); ceilingTile.x = tile.worldX + (Math.random() * 400 - 200); ceilingTile.y = tile.worldY + (Math.random() * 400 - 200); ceilingTile.visible = true; self.tiles.push(tile); } } } }; // Check if position is near a corner self.isNearCorner = function (gridX, gridY) { // Check 3x3 area around position for wall density var wallCount = 0; for (var dx = -1; dx <= 1; dx++) { for (var dy = -1; dy <= 1; dy++) { var checkX = gridX + dx; var checkY = gridY + dy; if (checkX >= 0 && checkX < worldGrid.width && checkY >= 0 && checkY < worldGrid.height) { if (worldGrid.walls && worldGrid.walls[checkX] && worldGrid.walls[checkX][checkY]) { wallCount++; } } } } return wallCount >= 3; // Near corner if 3+ walls nearby }; // Check if position is safe (center of open areas) self.isSafePosition = function (gridX, gridY) { // Ensure there's open space in all 4 cardinal directions var directions = [{ x: 0, y: -1 }, { x: 1, y: 0 }, { x: 0, y: 1 }, { x: -1, y: 0 }]; for (var i = 0; i < directions.length; i++) { var checkX = gridX + directions[i].x; var checkY = gridY + directions[i].y; if (checkX >= 0 && checkX < worldGrid.width && checkY >= 0 && checkY < worldGrid.height) { if (worldGrid.walls && worldGrid.walls[checkX] && worldGrid.walls[checkX][checkY]) { return false; } } } return true; }; self.render = function (player) { // Clear existing sprites for (var i = 0; i < self.tiles.length; i++) { if (self.tiles[i].sprite) { self.tiles[i].sprite.visible = false; } } var visibleTiles = []; // Calculate which tiles are visible and their screen positions for (var i = 0; i < self.tiles.length; i++) { var tile = self.tiles[i]; var dx = tile.worldX - player.x; var dy = tile.worldY - player.y; var distance = Math.sqrt(dx * dx + dy * dy); // Only render tiles within reasonable distance if (distance < 800) { // Calculate angle relative to player's view direction var tileAngle = Math.atan2(dy, dx); var angleDiff = tileAngle - player.angle; // Normalize angle difference while (angleDiff > Math.PI) { angleDiff -= 2 * Math.PI; } while (angleDiff < -Math.PI) { angleDiff += 2 * Math.PI; } // Check if tile is within field of view var fov = Math.PI / 3; if (Math.abs(angleDiff) < fov / 2) { // Calculate screen X position var screenX = 1366 + angleDiff / (fov / 2) * 1366; // Only add tiles that are within horizontal screen bounds with margin if (screenX >= -50 && screenX <= 2782) { // Apply pitch offset to ceiling tiles var pitchOffset = player.pitch * 400; visibleTiles.push({ tile: tile, distance: distance, screenX: screenX, screenY: 400 - 200 * (1000 / (distance + 100)) + pitchOffset // Project to ceiling with pitch }); } } } } // Sort by distance (farthest first) visibleTiles.sort(function (a, b) { return b.distance - a.distance; }); // Render visible tiles for (var i = 0; i < visibleTiles.length; i++) { var visibleTile = visibleTiles[i]; var tile = visibleTile.tile; if (!tile.sprite) { tile.sprite = self.addChild(LK.getAsset('normalCeiling', { anchorX: 0.5, anchorY: 0.5 })); } tile.sprite.x = visibleTile.screenX; tile.sprite.y = visibleTile.screenY; tile.sprite.visible = true; // Scale based on distance var scale = Math.max(0.1, 20 / (visibleTile.distance + 20)); tile.sprite.scaleX = scale; tile.sprite.scaleY = scale; } }; return self; }); var Door = Container.expand(function () { var self = Container.call(this); var doorGraphics = self.attachAsset('door', { anchorX: 0.5, anchorY: 0.5 }); self.isInteracting = false; self.magneticRadius = 150; // Distance at which door starts attracting player self.magneticStrength = 0.02; // Strength of magnetic pull self.down = function (x, y, obj) { if (!self.isInteracting) { self.isInteracting = true; self.triggerLevelTransition(); } }; // Update method to create magnetic attraction effect // Track last player position for crossing detection self.lastPlayerPosition = self.lastPlayerPosition || { x: 0, y: 0 }; self.lastPlayerInDoor = self.lastPlayerInDoor || false; self.update = function () { if (!player || self.isInteracting) return; // Fix door positioning - ensure it's at proper world coordinates var targetX = (worldGrid.width / 2 + 3) * worldGrid.cellSize; var targetY = (worldGrid.height / 2 + 2) * worldGrid.cellSize; // Keep door at exact world position (not raised above ground) if (Math.abs(self.x - targetX) > 5) { self.x = targetX; } if (Math.abs(self.y - targetY) > 5) { self.y = targetY; } // Calculate distance to player var dx = self.x - player.x; var dy = self.y - player.y; var distance = Math.sqrt(dx * dx + dy * dy); // Add controlled glitch effect to make door recognizable as exit // Slower color changes to maintain visibility var glitchTintOptions = [0xFFFFFF, 0x00FFFF, 0xFFFF00, 0xFF00FF, 0xFFFFFF]; var glitchIndex = Math.floor(LK.ticks * 0.1 % glitchTintOptions.length); doorGraphics.tint = glitchTintOptions[glitchIndex]; // Gentle scale pulsing for visibility without making door disappear var scaleGlitch = 1.0 + Math.sin(LK.ticks * 0.2) * 0.1; doorGraphics.scaleX = scaleGlitch; doorGraphics.scaleY = scaleGlitch; // Reduced jitter to prevent door from becoming invisible var jitterRange = 2; var jitterX = Math.sin(LK.ticks * 0.15) * jitterRange; var jitterY = Math.cos(LK.ticks * 0.12) * jitterRange; doorGraphics.x = jitterX; doorGraphics.y = jitterY; // Ensure door graphics stay visible doorGraphics.visible = true; doorGraphics.alpha = Math.max(0.7, 0.7 + Math.sin(LK.ticks * 0.1) * 0.3); // Check if player is currently inside door area var doorRadius = 60; // Door interaction area var currentlyInDoor = distance < doorRadius; // Detect door crossing - if player was outside and now inside, or vice versa if (!self.lastPlayerInDoor && currentlyInDoor) { // Player just entered door area - trigger level completion self.isInteracting = true; self.triggerLevelTransition(); } // Update last position tracking self.lastPlayerInDoor = currentlyInDoor; self.lastPlayerPosition.x = player.x; self.lastPlayerPosition.y = player.y; // If player is within magnetic radius, apply attraction force if (distance < self.magneticRadius && distance > 20) { // Don't pull if too close // Calculate attraction force (stronger when closer) var force = self.magneticStrength * (self.magneticRadius - distance) / self.magneticRadius; // Normalize direction vector var dirX = dx / distance; var dirY = dy / distance; // Apply magnetic pull to player's target position player.targetX += dirX * force * 10; player.targetY += dirY * force * 10; // Increase glitch intensity when attracting var intensePulse = 0.5 + Math.sin(LK.ticks * 0.5) * 0.5; doorGraphics.alpha = intensePulse; } else { doorGraphics.alpha = 1.0; // Reset alpha when not attracting } }; self.triggerLevelTransition = function () { // Create black screen overlay var blackScreen = LK.getAsset('untexturedArea', { anchorX: 0, anchorY: 0, width: 2732, height: 2048, alpha: 0 }); blackScreen.tint = 0x000000; LK.gui.addChild(blackScreen); // Create level completion text - position at minimap center var levelText = new Text2('NIVEL 1 COMPLETADO', { size: 100, fill: 0x00FF00 }); levelText.anchor.set(0.5, 0.5); levelText.x = 800; // Match minimap X position (center of minimap area) levelText.y = -200; // Start above screen levelText.alpha = 0; LK.gui.addChild(levelText); // Animate black screen fade in tween(blackScreen, { alpha: 0.8 }, { duration: 800, onFinish: function onFinish() { // Animate level text drop down and fade in - center at minimap position tween(levelText, { y: 1024, alpha: 1 }, { duration: 1200, easing: tween.bounceOut, onFinish: function onFinish() { // Wait 2 seconds showing completion message LK.setTimeout(function () { // Fade out completion message tween(levelText, { alpha: 0 }, { duration: 800, onFinish: function onFinish() { // Change to next level text levelText.setText('NIVEL 2'); levelText.fill = 0xFFFFFF; tween(levelText, { alpha: 1 }, { duration: 500, onFinish: function onFinish() { // Wait another second, then fade everything out LK.setTimeout(function () { tween(levelText, { alpha: 0 }, { duration: 1000 }); tween(blackScreen, { alpha: 0 }, { duration: 1500, onFinish: function onFinish() { blackScreen.destroy(); levelText.destroy(); self.isInteracting = false; } }); }, 1000); } }); } }); }, 2000); } }); } }); }; return self; }); var ErrorChecker = Container.expand(function () { var self = Container.call(this); self.errorLog = []; self.maxLogSize = 50; self.checkInterval = 60; // Check every 60 frames self.lastCheckTime = 0; // Add error to log with timestamp self.logError = function (type, message, severity) { var error = { type: type, message: message, severity: severity || 'warning', // 'error', 'warning', 'info' timestamp: Date.now(), frame: LK.ticks }; self.errorLog.push(error); // Keep log size manageable if (self.errorLog.length > self.maxLogSize) { self.errorLog.shift(); } // Log to console based on severity if (severity === 'error') { console.error('[ERROR]', type + ':', message); } else if (severity === 'warning') { console.warn('[WARNING]', type + ':', message); } else { console.log('[INFO]', type + ':', message); } }; // Check player state for errors self.checkPlayerState = function () { if (!player) { self.logError('Player', 'Player object is null or undefined', 'error'); return false; } // Check position bounds if (player.x < 0 || player.x >= worldGrid.width * worldGrid.cellSize || player.y < 0 || player.y >= worldGrid.height * worldGrid.cellSize) { self.logError('Player', 'Player position out of world bounds: (' + Math.floor(player.x) + ', ' + Math.floor(player.y) + ')', 'warning'); } // Check for NaN values if (isNaN(player.x) || isNaN(player.y) || isNaN(player.angle)) { self.logError('Player', 'Player has NaN values - x:' + player.x + ' y:' + player.y + ' angle:' + player.angle, 'error'); return false; } // Check if player is stuck in walls if (worldGrid && worldGrid.checkCollision && worldGrid.checkCollision(player.x, player.y)) { self.logError('Player', 'Player is stuck inside wall at (' + Math.floor(player.x) + ', ' + Math.floor(player.y) + ')', 'warning'); } return true; }; // Check world grid integrity self.checkWorldGrid = function () { if (!worldGrid) { self.logError('WorldGrid', 'WorldGrid object is null or undefined', 'error'); return false; } if (!worldGrid.walls) { self.logError('WorldGrid', 'WorldGrid walls array is null or undefined', 'error'); return false; } // Check grid dimensions if (worldGrid.width <= 0 || worldGrid.height <= 0) { self.logError('WorldGrid', 'Invalid grid dimensions: ' + worldGrid.width + 'x' + worldGrid.height, 'error'); return false; } // Check for corrupted wall data var wallErrors = 0; if (worldGrid && worldGrid.walls && worldGrid.width && worldGrid.height) { for (var x = 0; x < Math.min(worldGrid.width, 10); x++) { if (!worldGrid.walls[x]) { wallErrors++; continue; } for (var y = 0; y < Math.min(worldGrid.height, 10); y++) { if (typeof worldGrid.walls[x][y] !== 'boolean') { wallErrors++; } } } } if (wallErrors > 0) { self.logError('WorldGrid', 'Found ' + wallErrors + ' corrupted wall data points', 'warning'); } return true; }; // Check renderer states self.checkRenderers = function () { // Check wall renderer if (typeof wallRenderer === 'undefined' || !wallRenderer) { self.logError('Renderer', 'Wall renderer is null or undefined', 'error'); return false; } if (wallRenderer.wallStrips && wallRenderer.wallStrips.length === 0) { self.logError('Renderer', 'Wall renderer has no wall strips initialized', 'warning'); } // Check raycast renderer if (typeof raycastRenderer === 'undefined' || !raycastRenderer) { self.logError('Renderer', 'Raycast renderer is null or undefined', 'error'); return false; } if (raycastRenderer.wallColumns && raycastRenderer.wallColumns.length === 0) { self.logError('Renderer', 'Raycast renderer has no columns initialized', 'warning'); } return true; }; // Check memory usage and performance self.checkPerformance = function () { // Check FPS if (typeof fpsDisplay !== 'undefined' && fpsDisplay < 20) { self.logError('Performance', 'Low FPS detected: ' + fpsDisplay, 'warning'); } // Check object counts var totalChildren = 0; if (game && game.children) { totalChildren = game.children.length; } if (totalChildren > 1000) { self.logError('Performance', 'High object count: ' + totalChildren + ' children in game', 'warning'); } // Check error log size if (self.errorLog.length > self.maxLogSize * 0.8) { self.logError('Performance', 'Error log is getting full: ' + self.errorLog.length + '/' + self.maxLogSize, 'info'); } }; // Check asset integrity self.checkAssets = function () { // Check if critical assets exist var criticalAssets = ['wallSegment', 'floorStrip', 'ceilingStrip', 'player']; for (var i = 0; i < criticalAssets.length; i++) { var asset = criticalAssets[i]; try { var testAsset = LK.getAsset(asset, {}); if (!testAsset) { self.logError('Assets', 'Critical asset missing: ' + asset, 'error'); } } catch (e) { self.logError('Assets', 'Error loading asset ' + asset + ': ' + e.message, 'error'); } } }; // Check procedural generation state self.checkProcGen = function () { if (!procGen) { self.logError('ProcGen', 'Procedural generator is null or undefined', 'error'); return false; } // Check if chunks are being generated if (procGen.generatedChunks) { var chunkCount = Object.keys(procGen.generatedChunks).length; if (chunkCount === 0) { self.logError('ProcGen', 'No chunks have been generated', 'warning'); } else if (chunkCount > 100) { self.logError('ProcGen', 'Large number of chunks generated: ' + chunkCount, 'info'); } } return true; }; // Run comprehensive error check self.runFullCheck = function () { var startTime = Date.now(); var checksRun = 0; var errorsBefore = self.errorLog.length; try { if (self.checkPlayerState()) checksRun++; if (self.checkWorldGrid()) checksRun++; if (self.checkRenderers()) checksRun++; if (self.checkProcGen()) checksRun++; self.checkPerformance(); checksRun++; self.checkAssets(); checksRun++; } catch (e) { self.logError('ErrorChecker', 'Exception during error check: ' + e.message, 'error'); } var endTime = Date.now(); var newErrors = self.errorLog.length - errorsBefore; if (newErrors > 0) { self.logError('ErrorChecker', 'Found ' + newErrors + ' new issues in ' + checksRun + ' checks (' + (endTime - startTime) + 'ms)', 'info'); } }; // Get error summary self.getErrorSummary = function () { var summary = { total: self.errorLog.length, errors: 0, warnings: 0, info: 0, recent: 0 }; var recentTime = Date.now() - 5000; // Last 5 seconds for (var i = 0; i < self.errorLog.length; i++) { var error = self.errorLog[i]; if (error.severity === 'error') summary.errors++;else if (error.severity === 'warning') summary.warnings++;else summary.info++; if (error.timestamp > recentTime) summary.recent++; } return summary; }; // Clear error log self.clearLog = function () { self.errorLog = []; self.logError('ErrorChecker', 'Error log cleared', 'info'); }; // Check if system is healthy self.isSystemHealthy = function () { var summary = self.getErrorSummary(); return summary.errors === 0 && summary.warnings < 5; }; // Inspect game state for common issues self.inspectGameState = function () { var issues = []; // Check global variables existence if (typeof player === 'undefined' || !player) { issues.push('Player object is null or undefined'); } if (typeof worldGrid === 'undefined' || !worldGrid) { issues.push('WorldGrid object is null or undefined'); } if (typeof procGen === 'undefined' || !procGen) { issues.push('ProcGen object is null or undefined'); } if (typeof game === 'undefined' || !game) { issues.push('Game object is null or undefined'); } // Check player state if exists if (player) { if (isNaN(player.x) || isNaN(player.y) || isNaN(player.angle)) { issues.push('Player has NaN coordinates: x=' + player.x + ', y=' + player.y + ', angle=' + player.angle); } if (player.x < 0 || player.y < 0) { issues.push('Player has negative coordinates: x=' + player.x + ', y=' + player.y); } if (worldGrid && worldGrid.width && worldGrid.height && worldGrid.cellSize && (player.x > worldGrid.width * worldGrid.cellSize || player.y > worldGrid.height * worldGrid.cellSize)) { issues.push('Player is outside world bounds'); } } // Check world grid integrity if (worldGrid && worldGrid.walls && worldGrid.width && worldGrid.height) { var wallErrors = 0; var nullColumns = 0; for (var x = 0; x < Math.min(worldGrid.width, 20); x++) { if (!worldGrid.walls[x]) { nullColumns++; continue; } for (var y = 0; y < Math.min(worldGrid.height, 20); y++) { if (typeof worldGrid.walls[x][y] !== 'boolean') { wallErrors++; } } } if (nullColumns > 0) { issues.push('Found ' + nullColumns + ' null wall columns'); } if (wallErrors > 0) { issues.push('Found ' + wallErrors + ' invalid wall data points'); } } // Check renderer integrity if (typeof wallRenderer !== 'undefined' && wallRenderer) { if (!wallRenderer.wallStrips || wallRenderer.wallStrips.length === 0) { issues.push('Wall renderer has no strips initialized'); } } else { issues.push('Wall renderer is not defined'); } if (typeof raycastRenderer !== 'undefined' && raycastRenderer) { if (!raycastRenderer.wallColumns || raycastRenderer.wallColumns.length === 0) { issues.push('Raycast renderer has no columns initialized'); } } else { issues.push('Raycast renderer is not defined'); } // Check procedural generation if (typeof procGen !== 'undefined' && procGen && procGen.generatedChunks) { var chunkCount = Object.keys(procGen.generatedChunks).length; if (chunkCount === 0) { issues.push('No procedural chunks have been generated'); } else if (chunkCount > 200) { issues.push('Excessive chunk count: ' + chunkCount + ' (potential memory leak)'); } } else { issues.push('ProcGen is not defined or has no generatedChunks'); } // Check game object tree if (typeof game !== 'undefined' && game && game.children) { var childCount = game.children.length; if (childCount > 2000) { issues.push('High game object count: ' + childCount + ' children'); } } else { issues.push('Game object is not defined or has no children'); } // Performance checks if (typeof fpsDisplay !== 'undefined' && fpsDisplay < 15) { issues.push('Critical FPS: ' + fpsDisplay); } return issues; }; // Inspect memory usage and object counts self.inspectMemoryUsage = function () { var memoryInfo = { gameChildren: 0, wallStrips: 0, raycastColumns: 0, generatedChunks: 0, errorLogSize: self.errorLog.length, maxLogSize: self.maxLogSize }; if (typeof game !== 'undefined' && game && game.children) { memoryInfo.gameChildren = game.children.length; } if (typeof wallRenderer !== 'undefined' && wallRenderer && wallRenderer.wallStrips) { memoryInfo.wallStrips = wallRenderer.wallStrips.length; } if (typeof raycastRenderer !== 'undefined' && raycastRenderer && raycastRenderer.wallColumns) { memoryInfo.raycastColumns = raycastRenderer.wallColumns.length; } if (typeof procGen !== 'undefined' && procGen && procGen.generatedChunks) { memoryInfo.generatedChunks = Object.keys(procGen.generatedChunks).length; } // Check for memory issues var issues = []; if (memoryInfo.gameChildren > 1500) { issues.push('High game object count: ' + memoryInfo.gameChildren); } if (memoryInfo.generatedChunks > 150) { issues.push('High chunk count: ' + memoryInfo.generatedChunks); } if (memoryInfo.errorLogSize > memoryInfo.maxLogSize * 0.9) { issues.push('Error log nearly full: ' + memoryInfo.errorLogSize + '/' + memoryInfo.maxLogSize); } return { info: memoryInfo, issues: issues }; }; // Inspect coordinate system consistency self.inspectCoordinateSystem = function () { var issues = []; if (typeof player === 'undefined' || !player || typeof worldGrid === 'undefined' || !worldGrid) { issues.push('Cannot inspect coordinates: missing player or worldGrid'); return issues; } // Check if player coordinates make sense if (worldGrid.cellSize && worldGrid.width && worldGrid.height) { var playerGridX = Math.floor(player.x / worldGrid.cellSize); var playerGridY = Math.floor(player.y / worldGrid.cellSize); if (playerGridX < 0 || playerGridX >= worldGrid.width) { issues.push('Player grid X coordinate out of bounds: ' + playerGridX); } if (playerGridY < 0 || playerGridY >= worldGrid.height) { issues.push('Player grid Y coordinate out of bounds: ' + playerGridY); } } else { issues.push('WorldGrid missing required properties (cellSize, width, height)'); } // Check if player is in a wall if (worldGrid.hasWallAt && worldGrid.hasWallAt(player.x, player.y)) { issues.push('Player is inside a wall at (' + Math.floor(player.x) + ', ' + Math.floor(player.y) + ')'); } // Check coordinate conversion consistency if (worldGrid.screenToWorld && worldGrid.worldToScreen) { var testWorldCoord = { x: 1000, y: 1000 }; var screenCoord = worldGrid.worldToScreen(testWorldCoord.x, testWorldCoord.y); var backToWorld = worldGrid.screenToWorld(screenCoord.x, screenCoord.y); if (Math.abs(backToWorld.x - testWorldCoord.x) > 1 || Math.abs(backToWorld.y - testWorldCoord.y) > 1) { issues.push('Coordinate conversion inconsistency detected'); } } return issues; }; // Run comprehensive inspection self.runInspection = function () { var startTime = Date.now(); var allIssues = []; try { // Inspect game state var gameStateIssues = self.inspectGameState(); allIssues = allIssues.concat(gameStateIssues); // Inspect memory usage var memoryResult = self.inspectMemoryUsage(); allIssues = allIssues.concat(memoryResult.issues); // Inspect coordinates var coordIssues = self.inspectCoordinateSystem(); allIssues = allIssues.concat(coordIssues); // Log all found issues for (var i = 0; i < allIssues.length; i++) { var severity = 'warning'; if (allIssues[i].indexOf('Critical') !== -1 || allIssues[i].indexOf('NaN') !== -1) { severity = 'error'; } else if (allIssues[i].indexOf('High') !== -1 || allIssues[i].indexOf('Excessive') !== -1) { severity = 'warning'; } else { severity = 'info'; } self.logError('Inspection', allIssues[i], severity); } } catch (e) { self.logError('Inspection', 'Error during inspection: ' + e.message, 'error'); } var endTime = Date.now(); var issueCount = allIssues.length; if (issueCount > 0) { self.logError('Inspection', 'Found ' + issueCount + ' issues during inspection (' + (endTime - startTime) + 'ms)', 'info'); } else { self.logError('Inspection', 'No issues found during inspection (' + (endTime - startTime) + 'ms)', 'info'); } return allIssues; }; // Get inspection summary for display self.getInspectionSummary = function () { var issues = self.runInspection(); var summary = { totalIssues: issues.length, criticalIssues: 0, warningIssues: 0, infoIssues: 0, topIssues: [] }; // Categorize issues for (var i = 0; i < issues.length; i++) { var issue = issues[i]; if (issue.indexOf('Critical') !== -1 || issue.indexOf('NaN') !== -1) { summary.criticalIssues++; } else if (issue.indexOf('High') !== -1 || issue.indexOf('Excessive') !== -1) { summary.warningIssues++; } else { summary.infoIssues++; } // Keep top 5 issues for display if (summary.topIssues.length < 5) { summary.topIssues.push(issue); } } return summary; }; // Update method called every frame self.update = function () { // Run checks at specified interval if (LK.ticks % self.checkInterval === 0) { self.runFullCheck(); } // Run inspection every 180 frames (3 seconds at 60fps) if (LK.ticks % 180 === 0) { self.runInspection(); } // Emergency checks every frame for critical issues if (player && (isNaN(player.x) || isNaN(player.y))) { self.logError('Critical', 'Player position is NaN - emergency check', 'error'); } }; return self; }); var GeometricWallRenderer = Container.expand(function () { var self = Container.call(this); // Simplified wall rendering with geometric shapes self.wallStrips = []; self.numStrips = 64; // Further reduced for better performance self.maxWalls = 32; // Maximum number of wall strips to render // Initialize wall strips pool self.initWallStrips = function () { for (var i = 0; i < self.maxWalls; i++) { var wallStrip = self.addChild(LK.getAsset('wallSegment', { anchorX: 0.5, anchorY: 0.5 })); wallStrip.visible = false; self.wallStrips.push(wallStrip); } }; // Get available wall strip from pool self.getWallStrip = function () { for (var i = 0; i < self.wallStrips.length; i++) { if (!self.wallStrips[i].visible) { return self.wallStrips[i]; } } return null; }; // Render walls using simplified column-based approach self.render = function (player) { // Initialize strips if not done if (self.wallStrips.length === 0) { self.initWallStrips(); } // Hide all wall strips for (var j = 0; j < self.wallStrips.length; j++) { self.wallStrips[j].visible = false; } var fov = Math.PI / 3; // 60 degrees field of view var halfFov = fov / 2; var screenCenter = 1024; // Y center of screen var pitchOffset = player.pitch * 300; // Apply pitch for vertical look var stripWidth = 2732 / self.numStrips; var wallsRendered = 0; // Cast rays and render wall strips for (var i = 0; i < self.numStrips && wallsRendered < self.maxWalls; i++) { var rayAngle = player.angle - halfFov + i / self.numStrips * fov; var rayData = self.castSimpleRay(player.x, player.y, rayAngle); if (rayData.hit) { var distance = rayData.distance; // Apply fish-eye correction var correctedDistance = distance * Math.cos(rayAngle - player.angle); // Calculate screen X position for horizontal bounds checking var screenX = i * stripWidth + stripWidth / 2; // Only render if within strict horizontal screen bounds if (screenX >= 0 && screenX <= 2732) { // Get wall strip from pool var wallStrip = self.getWallStrip(); if (wallStrip) { // Calculate wall height based on distance var baseWallSize = worldGrid.cellSize; var wallHeight = Math.max(60, baseWallSize * (500 / (correctedDistance + 50))); // Position wall strip within screen bounds wallStrip.width = stripWidth + 2; // Add small overlap wallStrip.height = wallHeight; wallStrip.x = Math.max(0, Math.min(2732, screenX)); // Strictly clamp to screen bounds wallStrip.y = screenCenter + pitchOffset; wallStrip.visible = true; // Apply distance-based shading var shadingFactor = Math.max(0.2, 1.0 - correctedDistance / 600); var tintValue = 0xFFFFFF; // Special rendering for door if (rayData.hitType === 'door') { // Use bright, visible colors for door var doorColors = [0xFFFFFF, 0x00FFFF, 0xFFFF00, 0xFF00FF]; var colorIndex = Math.floor(LK.ticks * 0.2 % doorColors.length); wallStrip.tint = doorColors[colorIndex]; // Make door slightly taller wallStrip.height = wallHeight * 1.1; } else { wallStrip.tint = tintValue; // Add slight variation based on position for texture effect var positionVariation = (rayData.hitX + rayData.hitY) % 40; if (positionVariation < 20) { tintValue = Math.floor(tintValue * 0.9); // Slightly darker wallStrip.tint = tintValue << 16 | tintValue << 8 | tintValue; } } wallsRendered++; } } } } }; // Simplified raycasting for geometric walls self.castSimpleRay = function (startX, startY, angle) { var rayX = startX; var rayY = startY; var deltaX = Math.cos(angle) * 8; // Larger steps for performance var deltaY = Math.sin(angle) * 8; var distance = 0; var maxDistance = 600; var stepSize = 8; // Raycast until wall hit or max distance while (distance < maxDistance) { rayX += deltaX; rayY += deltaY; distance += stepSize; // Check for wall or door collision var hitWall = worldGrid.hasWallAt(rayX, rayY); var hitDoor = worldGrid.hasDoorAt(rayX, rayY); if (hitWall || hitDoor) { // Store hit type for special rendering self.lastHitType = hitDoor ? 'door' : 'wall'; return { hit: true, distance: distance, hitX: rayX, hitY: rayY, hitType: self.lastHitType }; } } return { hit: false, distance: maxDistance, hitX: rayX, hitY: rayY }; }; return self; }); var LightManager = Container.expand(function () { var self = Container.call(this); self.lights = []; // Method to add a light at a specific world position self.addLight = function (worldX, worldY) { var light = self.addChild(LK.getAsset('smallLight', { anchorX: 0.5, anchorY: 0.5 })); light.x = worldX; light.y = worldY; light.visible = true; self.lights.push(light); }; // Method to clear all lights self.clearLights = function () { for (var i = 0; i < self.lights.length; i++) { self.lights[i].visible = false; } self.lights = []; }; return self; }); var Minimap = Container.expand(function () { var self = Container.call(this); self.mapSize = 400; // Size of minimap in pixels self.gridCellSize = 8; // Size of each grid cell in minimap pixels self.viewRange = 25; // Number of grid cells to show in each direction // Create background var background = self.addChild(LK.getAsset('untexturedArea', { anchorX: 0.5, anchorY: 0.5, width: self.mapSize, height: self.mapSize, alpha: 0.8 })); background.tint = 0x222222; // Create border var border = self.addChild(LK.getAsset('untexturedArea', { anchorX: 0.5, anchorY: 0.5, width: self.mapSize + 4, height: self.mapSize + 4, alpha: 1.0 })); border.tint = 0xFFFFFF; // Grid cells container self.gridContainer = self.addChild(new Container()); // Player indicator self.playerIndicator = self.addChild(LK.getAsset('player', { anchorX: 0.5, anchorY: 0.5, scaleX: 0.8, scaleY: 0.8 })); self.playerIndicator.tint = 0xFF0000; // Coordinate grid lines self.gridLines = []; for (var i = 0; i <= self.viewRange * 2; i++) { // Vertical lines var vLine = self.addChild(LK.getAsset('untexturedArea', { anchorX: 0.5, anchorY: 0.5, width: 1, height: self.mapSize, alpha: 0.3 })); vLine.tint = 0x666666; self.gridLines.push(vLine); // Horizontal lines var hLine = self.addChild(LK.getAsset('untexturedArea', { anchorX: 0.5, anchorY: 0.5, width: self.mapSize, height: 1, alpha: 0.3 })); hLine.tint = 0x666666; self.gridLines.push(hLine); } // Grid cells for walls/floors self.gridCells = []; // Initialize grid cells for (var x = 0; x < self.viewRange * 2 + 1; x++) { self.gridCells[x] = []; for (var y = 0; y < self.viewRange * 2 + 1; y++) { var cell = self.gridContainer.addChild(LK.getAsset('untexturedArea', { anchorX: 0.5, anchorY: 0.5, width: self.gridCellSize - 1, height: self.gridCellSize - 1 })); cell.visible = false; self.gridCells[x][y] = cell; } } // Update minimap based on player position self.update = function (player) { if (!player || !worldGrid) return; var playerGridX = Math.floor(player.x / worldGrid.cellSize); var playerGridY = Math.floor(player.y / worldGrid.cellSize); // Position player indicator at center self.playerIndicator.x = 0; self.playerIndicator.y = 0; self.playerIndicator.rotation = player.angle + Math.PI / 2; // Adjust rotation // Update grid lines positions var lineIndex = 0; for (var i = 0; i <= self.viewRange * 2; i++) { var offset = (i - self.viewRange) * self.gridCellSize; // Vertical lines if (lineIndex < self.gridLines.length) { self.gridLines[lineIndex].x = offset; self.gridLines[lineIndex].y = 0; lineIndex++; } // Horizontal lines if (lineIndex < self.gridLines.length) { self.gridLines[lineIndex].x = 0; self.gridLines[lineIndex].y = offset; lineIndex++; } } // Update grid cells for (var x = 0; x < self.viewRange * 2 + 1; x++) { for (var y = 0; y < self.viewRange * 2 + 1; y++) { var worldX = playerGridX - self.viewRange + x; var worldY = playerGridY - self.viewRange + y; var cell = self.gridCells[x][y]; var screenX = (x - self.viewRange) * self.gridCellSize; var screenY = (y - self.viewRange) * self.gridCellSize; cell.x = screenX; cell.y = screenY; // Check if position is within world bounds if (worldX >= 0 && worldX < worldGrid.width && worldY >= 0 && worldY < worldGrid.height) { cell.visible = true; // Check if this position matches the door location var doorGridX = Math.floor(door.x / worldGrid.cellSize); var doorGridY = Math.floor(door.y / worldGrid.cellSize); if (worldX === doorGridX && worldY === doorGridY) { // Door position cell.tint = 0xFFFFFF; // White for door cell.alpha = 1.0; } else if (worldGrid.walls[worldX][worldY]) { // Wall cell.tint = 0x46f7a3; // Green for walls cell.alpha = 1.0; } else { // Floor cell.tint = 0x74391f; // Brown for floors cell.alpha = 0.6; } } else { // Outside world bounds cell.visible = false; } } } }; return self; }); var MovementCrosshair = Container.expand(function () { var self = Container.call(this); self.isActive = false; self.activeButton = null; // Create base circle var base = self.attachAsset('crosshairBase', { anchorX: 0.5, anchorY: 0.5 }); base.alpha = 0.6; // Create directional buttons var upButton = self.attachAsset('crosshairUp', { anchorX: 0.5, anchorY: 0.5 }); upButton.x = 0; upButton.y = -70; upButton.alpha = 0.7; var downButton = self.attachAsset('crosshairDown', { anchorX: 0.5, anchorY: 0.5 }); downButton.x = 0; downButton.y = 70; downButton.alpha = 0.7; var leftButton = self.attachAsset('crosshairLeft', { anchorX: 0.5, anchorY: 0.5 }); leftButton.x = -70; leftButton.y = 0; leftButton.alpha = 0.7; var rightButton = self.attachAsset('crosshairRight', { anchorX: 0.5, anchorY: 0.5 }); rightButton.x = 70; rightButton.y = 0; rightButton.alpha = 0.7; var centerButton = self.attachAsset('crosshairCenter', { anchorX: 0.5, anchorY: 0.5 }); centerButton.alpha = 0.8; // Movement state tracking self.movementState = { forward: false, backward: false, left: false, right: false }; // Button press handlers upButton.down = function (x, y, obj) { upButton.alpha = 1.0; self.movementState.forward = true; self.activeButton = 'up'; }; upButton.up = function (x, y, obj) { upButton.alpha = 0.7; self.movementState.forward = false; if (self.activeButton === 'up') { self.activeButton = null; } }; downButton.down = function (x, y, obj) { downButton.alpha = 1.0; self.movementState.backward = true; self.activeButton = 'down'; }; downButton.up = function (x, y, obj) { downButton.alpha = 0.7; self.movementState.backward = false; if (self.activeButton === 'down') { self.activeButton = null; } }; leftButton.down = function (x, y, obj) { leftButton.alpha = 1.0; self.movementState.left = true; self.activeButton = 'left'; }; leftButton.up = function (x, y, obj) { leftButton.alpha = 0.7; self.movementState.left = false; if (self.activeButton === 'left') { self.activeButton = null; } }; rightButton.down = function (x, y, obj) { rightButton.alpha = 1.0; self.movementState.right = true; self.activeButton = 'right'; }; rightButton.up = function (x, y, obj) { rightButton.alpha = 0.7; self.movementState.right = false; if (self.activeButton === 'right') { self.activeButton = null; } }; // Get current movement state self.getMovementState = function () { return self.movementState; }; // Reset all movement states self.resetMovement = function () { self.movementState.forward = false; self.movementState.backward = false; self.movementState.left = false; self.movementState.right = false; self.activeButton = null; upButton.alpha = 0.7; downButton.alpha = 0.7; leftButton.alpha = 0.7; rightButton.alpha = 0.7; }; return self; }); var PathfindingSystem = Container.expand(function () { var self = Container.call(this); // A* pathfinding implementation self.findPath = function (startX, startY, endX, endY) { var startGridX = Math.floor(startX / worldGrid.cellSize); var startGridY = Math.floor(startY / worldGrid.cellSize); var endGridX = Math.floor(endX / worldGrid.cellSize); var endGridY = Math.floor(endY / worldGrid.cellSize); var openList = []; var closedList = []; var cameFrom = []; // Initialize arrays for (var x = 0; x < worldGrid.width; x++) { cameFrom[x] = []; for (var y = 0; y < worldGrid.height; y++) { cameFrom[x][y] = null; } } var startNode = { x: startGridX, y: startGridY, g: 0, h: self.heuristic(startGridX, startGridY, endGridX, endGridY), f: 0 }; startNode.f = startNode.g + startNode.h; openList.push(startNode); while (openList.length > 0) { // Find node with lowest f score var currentNode = openList[0]; var currentIndex = 0; for (var i = 1; i < openList.length; i++) { if (openList[i].f < currentNode.f) { currentNode = openList[i]; currentIndex = i; } } // Remove current from open list openList.splice(currentIndex, 1); closedList.push(currentNode); // Check if we reached the goal if (currentNode.x === endGridX && currentNode.y === endGridY) { return self.reconstructPath(cameFrom, currentNode); } // Check neighbors var neighbors = [{ dx: 1, dy: 0 }, { dx: -1, dy: 0 }, { dx: 0, dy: 1 }, { dx: 0, dy: -1 }]; for (var i = 0; i < neighbors.length; i++) { var neighborX = currentNode.x + neighbors[i].dx; var neighborY = currentNode.y + neighbors[i].dy; // Check bounds if (neighborX < 0 || neighborX >= worldGrid.width || neighborY < 0 || neighborY >= worldGrid.height) { continue; } // Check if neighbor is in closed list var inClosedList = false; for (var j = 0; j < closedList.length; j++) { if (closedList[j].x === neighborX && closedList[j].y === neighborY) { inClosedList = true; break; } } if (inClosedList) continue; // Skip walls unless it's the end position if (worldGrid.walls[neighborX][neighborY] && !(neighborX === endGridX && neighborY === endGridY)) { continue; } var tentativeG = currentNode.g + 1; // Check if neighbor is in open list var existingNode = null; for (var j = 0; j < openList.length; j++) { if (openList[j].x === neighborX && openList[j].y === neighborY) { existingNode = openList[j]; break; } } if (existingNode && tentativeG >= existingNode.g) { continue; } cameFrom[neighborX][neighborY] = currentNode; var neighborNode = { x: neighborX, y: neighborY, g: tentativeG, h: self.heuristic(neighborX, neighborY, endGridX, endGridY), f: 0 }; neighborNode.f = neighborNode.g + neighborNode.h; if (existingNode) { existingNode.g = tentativeG; existingNode.f = neighborNode.f; } else { openList.push(neighborNode); } } } return []; // No path found }; // Manhattan distance heuristic self.heuristic = function (x1, y1, x2, y2) { return Math.abs(x1 - x2) + Math.abs(y1 - y2); }; // Reconstruct path from A* result self.reconstructPath = function (cameFrom, currentNode) { var path = []; var current = currentNode; while (current) { path.unshift({ x: current.x, y: current.y }); current = cameFrom[current.x][current.y]; } return path; }; // Create guaranteed path by carving through walls self.createGuaranteedPath = function (startX, startY, endX, endY) { var path = self.findPath(startX, startY, endX, endY); if (path.length === 0) { // No path exists, create one by carving through walls path = self.createDirectPath(startX, startY, endX, endY); } // Ensure path is wide enough for player movement self.widenPath(path); return path; }; // Create direct path when no route exists self.createDirectPath = function (startX, startY, endX, endY) { var startGridX = Math.floor(startX / worldGrid.cellSize); var startGridY = Math.floor(startY / worldGrid.cellSize); var endGridX = Math.floor(endX / worldGrid.cellSize); var endGridY = Math.floor(endY / worldGrid.cellSize); var path = []; var currentX = startGridX; var currentY = startGridY; // Create L-shaped path (horizontal first, then vertical) while (currentX !== endGridX) { path.push({ x: currentX, y: currentY }); if (currentX < endGridX) { currentX++; } else { currentX--; } } while (currentY !== endGridY) { path.push({ x: currentX, y: currentY }); if (currentY < endGridY) { currentY++; } else { currentY--; } } path.push({ x: endGridX, y: endGridY }); // Carve the path for (var i = 0; i < path.length; i++) { var pathNode = path[i]; if (pathNode.x >= 0 && pathNode.x < worldGrid.width && pathNode.y >= 0 && pathNode.y < worldGrid.height) { worldGrid.walls[pathNode.x][pathNode.y] = false; } } return path; }; // Widen path for better player movement self.widenPath = function (path) { for (var i = 0; i < path.length; i++) { var pathNode = path[i]; // Clear adjacent cells to make path wider var widening = [{ dx: 1, dy: 0 }, { dx: -1, dy: 0 }, { dx: 0, dy: 1 }, { dx: 0, dy: -1 }]; for (var j = 0; j < widening.length; j++) { var wideX = pathNode.x + widening[j].dx; var wideY = pathNode.y + widening[j].dy; if (wideX >= 0 && wideX < worldGrid.width && wideY >= 0 && wideY < worldGrid.height) { // Only widen if it doesn't break room structure if (Math.random() < 0.6) { worldGrid.walls[wideX][wideY] = false; } } } } }; return self; }); var Player = Container.expand(function () { var self = Container.call(this); self.x = 1366; self.y = 1024; self.angle = 0; self.pitch = 0; // Vertical look angle (up/down) self.speed = 3; self.rotSpeed = 0.1; // Smooth interpolation properties self.targetX = 1366; self.targetY = 1024; self.targetAngle = 0; self.targetPitch = 0; self.smoothingFactor = 0.15; // Player visual for debugging (will be hidden in first person) var playerGraphics = self.attachAsset('player', { anchorX: 0.5, anchorY: 0.5 }); playerGraphics.visible = false; // Hide for first person view self.moveForward = function () { var newX = self.targetX + Math.cos(self.targetAngle) * self.speed; var newY = self.targetY + Math.sin(self.targetAngle) * self.speed; // Constrain Y coordinate to not go below 0 if (newY < 0) { newY = 0; } // Check collision with world grid using improved collision detection if (!worldGrid.checkCollision(newX, newY)) { self.targetX = newX; self.targetY = newY; } else { // Wall sliding - try to move along walls instead of stopping completely // Try moving only horizontally if vertical movement is blocked if (!worldGrid.checkCollision(newX, self.targetY)) { self.targetX = newX; } // Try moving only vertically if horizontal movement is blocked else if (!worldGrid.checkCollision(self.targetX, newY)) { self.targetY = newY; } } }; self.moveBackward = function () { var newX = self.targetX - Math.cos(self.targetAngle) * self.speed; var newY = self.targetY - Math.sin(self.targetAngle) * self.speed; // Constrain Y coordinate to not go below 0 if (newY < 0) { newY = 0; } // Check collision with world grid using improved collision detection if (!worldGrid.checkCollision(newX, newY)) { self.targetX = newX; self.targetY = newY; } else { // Wall sliding - try to move along walls instead of stopping completely // Try moving only horizontally if vertical movement is blocked if (!worldGrid.checkCollision(newX, self.targetY)) { self.targetX = newX; } // Try moving only vertically if horizontal movement is blocked else if (!worldGrid.checkCollision(self.targetX, newY)) { self.targetY = newY; } } }; self.turnLeft = function () { self.targetAngle -= self.rotSpeed; }; self.turnRight = function () { self.targetAngle += self.rotSpeed; }; self.lookUp = function () { self.targetPitch = Math.max(-Math.PI / 3, self.targetPitch - self.rotSpeed); // Limit to -60 degrees }; self.lookDown = function () { self.targetPitch = Math.min(Math.PI / 3, self.targetPitch + self.rotSpeed); // Limit to +60 degrees }; self.updateSmooth = function () { // Smooth interpolation for position self.x += (self.targetX - self.x) * self.smoothingFactor; self.y += (self.targetY - self.y) * self.smoothingFactor; // Smooth interpolation for rotation with angle wrapping var angleDiff = self.targetAngle - self.angle; // Handle angle wrapping (ensure shortest rotation path) if (angleDiff > Math.PI) { angleDiff -= 2 * Math.PI; } if (angleDiff < -Math.PI) { angleDiff += 2 * Math.PI; } self.angle += angleDiff * self.smoothingFactor; // Smooth interpolation for pitch var pitchDiff = self.targetPitch - self.pitch; self.pitch += pitchDiff * self.smoothingFactor; }; return self; }); var ProcGen = Container.expand(function () { var self = Container.call(this); self.generatedChunks = {}; self.chunkSize = 6; // Much smaller chunks for tighter room placement self.roomMinSize = 1; self.roomMaxSize = 2; self.hallwayWidth = 1; // Keep narrow hallways for claustrophobic effect // Generate a procedural chunk at given chunk coordinates self.generateChunk = function (chunkX, chunkY) { var chunkKey = chunkX + ',' + chunkY; if (self.generatedChunks[chunkKey]) { return; // Already generated } self.generatedChunks[chunkKey] = true; // Calculate world grid offset for this chunk var offsetX = chunkX * self.chunkSize; var offsetY = chunkY * self.chunkSize; // Generate Backrooms-style layout for this chunk self.generateBackroomsChunk(offsetX, offsetY); }; // Generate Backrooms-style layout with guaranteed connectivity and multiple exits self.generateBackroomsChunk = function (offsetX, offsetY) { // First, fill entire chunk with walls for (var x = offsetX; x < offsetX + self.chunkSize; x++) { for (var y = offsetY; y < offsetY + self.chunkSize; y++) { if (x >= 0 && x < worldGrid.width && y >= 0 && y < worldGrid.height) { worldGrid.walls[x][y] = true; } } } // Create main room in center of chunk with irregular shape var mainRoomSize = 2; // Smaller main room for claustrophobic effect var mainRoomX = offsetX + Math.floor((self.chunkSize - mainRoomSize) / 2); var mainRoomY = offsetY + Math.floor((self.chunkSize - mainRoomSize) / 2); self.carveIrregularRoom(mainRoomX, mainRoomY, mainRoomSize, mainRoomSize); // Create 3-5 additional rooms for higher density and claustrophobic feel var numRooms = Math.floor(Math.random() * 3) + 3; // 3-5 rooms var rooms = [{ x: mainRoomX, y: mainRoomY, width: mainRoomSize, height: mainRoomSize, centerX: mainRoomX + Math.floor(mainRoomSize / 2), centerY: mainRoomY + Math.floor(mainRoomSize / 2) }]; for (var i = 0; i < numRooms; i++) { var attempts = 0; while (attempts < 30) { // Determine room size based on probabilities var roomSizes = self.getRoomSizeByProbability(); var roomW = roomSizes.width; var roomH = roomSizes.height; var roomX = offsetX + Math.floor(Math.random() * (self.chunkSize - roomW - 2)) + 1; var roomY = offsetY + Math.floor(Math.random() * (self.chunkSize - roomH - 2)) + 1; var newRoom = { x: roomX, y: roomY, width: roomW, height: roomH, centerX: roomX + Math.floor(roomW / 2), centerY: roomY + Math.floor(roomH / 2) }; if (!self.roomOverlaps(newRoom, rooms)) { self.carveIrregularRoom(roomX, roomY, roomW, roomH); rooms.push(newRoom); // Connect this room to multiple existing rooms for guaranteed connectivity self.connectToMultipleRooms(newRoom, rooms); break; } attempts++; } } // Create guaranteed multiple exits to adjacent chunks self.createMultipleChunkExits(offsetX, offsetY, rooms); // Create dead-end corridors for exploration variety self.createDeadEndCorridors(offsetX, offsetY, rooms); // Add some random pillars for atmosphere self.addRandomPillars(offsetX, offsetY); // Add pillars specifically in medium and large rooms self.addPillarsToRooms(offsetX, offsetY, rooms); // Validate and ensure all rooms are connected self.validateRoomConnectivity(rooms, offsetX, offsetY); // Ensure path to door exists from this chunk self.ensurePathToDoor(offsetX, offsetY, rooms); }; // Carve out a room (remove walls) self.carveRoom = function (x, y, width, height) { for (var roomX = x; roomX < x + width; roomX++) { for (var roomY = y; roomY < y + height; roomY++) { if (roomX >= 0 && roomX < worldGrid.width && roomY >= 0 && roomY < worldGrid.height) { worldGrid.walls[roomX][roomY] = false; } } } }; // Carve out an irregular room shape with random variations self.carveIrregularRoom = function (x, y, width, height) { var roomType = Math.random(); var centerX = x + Math.floor(width / 2); var centerY = y + Math.floor(height / 2); if (roomType < 0.4) { // Circular/oval room var radiusX = Math.floor(width / 2); var radiusY = Math.floor(height / 2); for (var roomX = x; roomX < x + width; roomX++) { for (var roomY = y; roomY < y + height; roomY++) { if (roomX >= 0 && roomX < worldGrid.width && roomY >= 0 && roomY < worldGrid.height) { var dx = roomX - centerX; var dy = roomY - centerY; // Create elliptical shape with some randomness var distanceSquared = dx * dx / (radiusX * radiusX) + dy * dy / (radiusY * radiusY); if (distanceSquared <= 1.0 + Math.random() * 0.3 - 0.15) { worldGrid.walls[roomX][roomY] = false; } } } } } else if (roomType < 0.7) { // L-shaped room self.carveRoom(x, y, width, Math.floor(height / 2) + 1); self.carveRoom(x + Math.floor(width / 2), y + Math.floor(height / 2), Math.floor(width / 2) + 1, Math.floor(height / 2) + 1); } else if (roomType < 0.9) { // Cross-shaped room var halfW = Math.floor(width / 2); var halfH = Math.floor(height / 2); // Vertical bar self.carveRoom(centerX - 1, y, 2, height); // Horizontal bar self.carveRoom(x, centerY - 1, width, 2); } else { // Regular rectangular room with random indentations self.carveRoom(x, y, width, height); // Add random indentations var indentations = Math.floor(Math.random() * 3) + 1; for (var i = 0; i < indentations; i++) { var indentX = x + Math.floor(Math.random() * width); var indentY = y + Math.floor(Math.random() * height); var indentSize = Math.floor(Math.random() * 2) + 1; for (var ix = 0; ix < indentSize; ix++) { for (var iy = 0; iy < indentSize; iy++) { var wallX = indentX + ix; var wallY = indentY + iy; if (wallX >= 0 && wallX < worldGrid.width && wallY >= 0 && wallY < worldGrid.height) { worldGrid.walls[wallX][wallY] = true; } } } } } }; // Check if room overlaps with existing rooms self.roomOverlaps = function (room, existingRooms) { for (var i = 0; i < existingRooms.length; i++) { var existing = existingRooms[i]; // Minimal padding between rooms for claustrophobic effect - only 1 cell apart if (room.x < existing.x + existing.width + 1 && room.x + room.width + 1 > existing.x && room.y < existing.y + existing.height + 1 && room.y + room.height + 1 > existing.y) { return true; } } return false; }; // Connect room to nearest existing room self.connectToNearestRoom = function (newRoom, existingRooms) { var nearestRoom = existingRooms[0]; var minDistance = Infinity; // Find nearest room for (var i = 0; i < existingRooms.length; i++) { if (existingRooms[i] !== newRoom) { var dx = newRoom.centerX - existingRooms[i].centerX; var dy = newRoom.centerY - existingRooms[i].centerY; var distance = Math.sqrt(dx * dx + dy * dy); if (distance < minDistance) { minDistance = distance; nearestRoom = existingRooms[i]; } } } // Create L-shaped corridor self.createCorridor(newRoom.centerX, newRoom.centerY, nearestRoom.centerX, nearestRoom.centerY); }; // Connect room to multiple existing rooms for guaranteed connectivity self.connectToMultipleRooms = function (newRoom, existingRooms) { // Sort rooms by distance to find nearest connections var roomDistances = []; for (var i = 0; i < existingRooms.length; i++) { if (existingRooms[i] !== newRoom) { var dx = newRoom.centerX - existingRooms[i].centerX; var dy = newRoom.centerY - existingRooms[i].centerY; var distance = Math.sqrt(dx * dx + dy * dy); roomDistances.push({ room: existingRooms[i], distance: distance }); } } // Sort by distance roomDistances.sort(function (a, b) { return a.distance - b.distance; }); // Always connect to at least 2 rooms for guaranteed multiple exits var minConnections = Math.min(2, roomDistances.length); var maxConnections = Math.min(3, roomDistances.length); // Up to 3 connections var connectionsToMake = Math.floor(Math.random() * (maxConnections - minConnections + 1)) + minConnections; for (var i = 0; i < connectionsToMake; i++) { self.createCurvedCorridor(newRoom.centerX, newRoom.centerY, roomDistances[i].room.centerX, roomDistances[i].room.centerY); } // Add one more connection with 40% probability for extra connectivity if (Math.random() < 0.4 && roomDistances.length > connectionsToMake) { self.createCurvedCorridor(newRoom.centerX, newRoom.centerY, roomDistances[connectionsToMake].room.centerX, roomDistances[connectionsToMake].room.centerY); } }; // Connect room to nearest existing room with curved corridor (legacy method for compatibility) self.connectToNearestRoomCurved = function (newRoom, existingRooms) { // Use the new multiple connections method self.connectToMultipleRooms(newRoom, existingRooms); }; // Create multiple guaranteed exits to adjacent chunks for better connectivity self.createMultipleChunkExits = function (offsetX, offsetY, rooms) { var midX = offsetX + Math.floor(self.chunkSize / 2); var midY = offsetY + Math.floor(self.chunkSize / 2); // Find main room (usually the first/largest) var mainRoom = rooms[0]; for (var i = 1; i < rooms.length; i++) { if (rooms[i].width * rooms[i].height > mainRoom.width * mainRoom.height) { mainRoom = rooms[i]; } } // Ensure at least 2-3 exits for multiple pathways var possibleExits = []; // Check which exits are possible if (offsetX > 0) { possibleExits.push('left'); } if (offsetX + self.chunkSize < worldGrid.width) { possibleExits.push('right'); } if (offsetY > 0) { possibleExits.push('top'); } if (offsetY + self.chunkSize < worldGrid.height) { possibleExits.push('bottom'); } // Guarantee at least 2 exits if possible, 3 if we have 4 sides available var minExits = Math.min(2, possibleExits.length); var maxExits = Math.min(3, possibleExits.length); var exitsToCreate = Math.floor(Math.random() * (maxExits - minExits + 1)) + minExits; // Shuffle possible exits for randomness for (var i = possibleExits.length - 1; i > 0; i--) { var j = Math.floor(Math.random() * (i + 1)); var temp = possibleExits[i]; possibleExits[i] = possibleExits[j]; possibleExits[j] = temp; } // Create the guaranteed exits for (var i = 0; i < exitsToCreate; i++) { var exitDirection = possibleExits[i]; // Connect from different rooms for variety var sourceRoom = rooms[i % rooms.length]; if (exitDirection === 'left') { self.createCorridor(sourceRoom.centerX, sourceRoom.centerY, offsetX, midY); } else if (exitDirection === 'right') { self.createCorridor(sourceRoom.centerX, sourceRoom.centerY, offsetX + self.chunkSize - 1, midY); } else if (exitDirection === 'top') { self.createCorridor(sourceRoom.centerX, sourceRoom.centerY, midX, offsetY); } else if (exitDirection === 'bottom') { self.createCorridor(sourceRoom.centerX, sourceRoom.centerY, midX, offsetY + self.chunkSize - 1); } } // Create additional exits with 50% probability for extra connectivity for (var i = exitsToCreate; i < possibleExits.length; i++) { if (Math.random() < 0.5) { var exitDirection = possibleExits[i]; var sourceRoom = rooms[Math.floor(Math.random() * rooms.length)]; if (exitDirection === 'left') { self.createCorridor(sourceRoom.centerX, sourceRoom.centerY, offsetX, midY); } else if (exitDirection === 'right') { self.createCorridor(sourceRoom.centerX, sourceRoom.centerY, offsetX + self.chunkSize - 1, midY); } else if (exitDirection === 'top') { self.createCorridor(sourceRoom.centerX, sourceRoom.centerY, midX, offsetY); } else if (exitDirection === 'bottom') { self.createCorridor(sourceRoom.centerX, sourceRoom.centerY, midX, offsetY + self.chunkSize - 1); } } } }; // Create dead-end corridors for exploration variety self.createDeadEndCorridors = function (offsetX, offsetY, rooms) { // First, check each room for exits and potentially add passages for (var i = 0; i < rooms.length; i++) { var room = rooms[i]; var hasExit = self.checkRoomHasExit(room, offsetX, offsetY); // If room has no exits, add a passage with 20% probability if (!hasExit && Math.random() < 0.2) { self.createRoomPassage(room, offsetX, offsetY); } } // Create 2-4 dead-end corridors per chunk var numDeadEnds = Math.floor(Math.random() * 3) + 2; // 2-4 dead ends for (var i = 0; i < numDeadEnds; i++) { // Choose a random room as starting point var sourceRoom = rooms[Math.floor(Math.random() * rooms.length)]; // Choose a random direction for the dead-end var directions = [{ dx: 1, dy: 0 }, // East { dx: -1, dy: 0 }, // West { dx: 0, dy: 1 }, // South { dx: 0, dy: -1 } // North ]; var direction = directions[Math.floor(Math.random() * directions.length)]; // Create dead-end corridor of random length (2-5 cells) var corridorLength = Math.floor(Math.random() * 4) + 2; var startX = sourceRoom.centerX; var startY = sourceRoom.centerY; // Find a good starting point on the room edge var edgeStartX = startX; var edgeStartY = startY; // Move to room edge if (direction.dx !== 0) { edgeStartX = direction.dx > 0 ? sourceRoom.x + sourceRoom.width : sourceRoom.x - 1; } else { edgeStartY = direction.dy > 0 ? sourceRoom.y + sourceRoom.height : sourceRoom.y - 1; } // Create the dead-end corridor self.createDeadEndPath(edgeStartX, edgeStartY, direction.dx, direction.dy, corridorLength, offsetX, offsetY); } }; // Check if a room has any exits (passages leading out) self.checkRoomHasExit = function (room, chunkOffsetX, chunkOffsetY) { // Check the perimeter of the room for any open passages var directions = [{ dx: 1, dy: 0 }, // East { dx: -1, dy: 0 }, // West { dx: 0, dy: 1 }, // South { dx: 0, dy: -1 } // North ]; // Check each edge of the room for (var x = room.x; x < room.x + room.width; x++) { for (var y = room.y; y < room.y + room.height; y++) { // Skip if this position is a wall if (x >= 0 && x < worldGrid.width && y >= 0 && y < worldGrid.height && worldGrid.walls[x][y]) { continue; } // Check adjacent cells for passages for (var d = 0; d < directions.length; d++) { var checkX = x + directions[d].dx; var checkY = y + directions[d].dy; // Check bounds if (checkX >= 0 && checkX < worldGrid.width && checkY >= 0 && checkY < worldGrid.height) { // If adjacent cell is open and outside the room bounds, it's an exit if (!worldGrid.walls[checkX][checkY] && (checkX < room.x || checkX >= room.x + room.width || checkY < room.y || checkY >= room.y + room.height)) { return true; // Found an exit } } } } } return false; // No exits found }; // Create a passage for a room without exits self.createRoomPassage = function (room, chunkOffsetX, chunkOffsetY) { // Determine the best direction for the passage var directions = [{ dx: 1, dy: 0, name: 'east' }, { dx: -1, dy: 0, name: 'west' }, { dx: 0, dy: 1, name: 'south' }, { dx: 0, dy: -1, name: 'north' }]; var bestDirection = directions[Math.floor(Math.random() * directions.length)]; // Create passage from room center in chosen direction var startX = room.centerX; var startY = room.centerY; // Move to room edge var edgeX = startX; var edgeY = startY; if (bestDirection.dx !== 0) { edgeX = bestDirection.dx > 0 ? room.x + room.width : room.x - 1; } else { edgeY = bestDirection.dy > 0 ? room.y + room.height : room.y - 1; } // Create passage large enough for player (width of 2-3 cells) var passageLength = Math.floor(Math.random() * 3) + 3; // 3-5 cells long self.createPlayerSizedPassage(edgeX, edgeY, bestDirection.dx, bestDirection.dy, passageLength, chunkOffsetX, chunkOffsetY); }; // Create a passage sized for player movement self.createPlayerSizedPassage = function (startX, startY, dirX, dirY, length, chunkOffsetX, chunkOffsetY) { for (var i = 0; i <= length; i++) { var passageX = startX + dirX * i; var passageY = startY + dirY * i; // Ensure passage coordinates are valid and within chunk bounds if (passageX >= chunkOffsetX && passageX < chunkOffsetX + self.chunkSize && passageY >= chunkOffsetY && passageY < chunkOffsetY + self.chunkSize && passageX >= 0 && passageX < worldGrid.width && passageY >= 0 && passageY < worldGrid.height) { // Clear main passage cell worldGrid.walls[passageX][passageY] = false; // Create wider passage (2-3 cells wide) for better player movement if (dirX !== 0) { // Horizontal passage - add vertical width if (passageY + 1 < worldGrid.height && passageY + 1 < chunkOffsetY + self.chunkSize) { worldGrid.walls[passageX][passageY + 1] = false; } if (passageY - 1 >= 0 && passageY - 1 >= chunkOffsetY) { worldGrid.walls[passageX][passageY - 1] = false; } // Occasionally add third row for wider passage if (Math.random() < 0.5 && passageY + 2 < worldGrid.height && passageY + 2 < chunkOffsetY + self.chunkSize) { worldGrid.walls[passageX][passageY + 2] = false; } } else { // Vertical passage - add horizontal width if (passageX + 1 < worldGrid.width && passageX + 1 < chunkOffsetX + self.chunkSize) { worldGrid.walls[passageX + 1][passageY] = false; } if (passageX - 1 >= 0 && passageX - 1 >= chunkOffsetX) { worldGrid.walls[passageX - 1][passageY] = false; } // Occasionally add third column for wider passage if (Math.random() < 0.5 && passageX + 2 < worldGrid.width && passageX + 2 < chunkOffsetX + self.chunkSize) { worldGrid.walls[passageX + 2][passageY] = false; } } } } }; // Create a single dead-end corridor path self.createDeadEndPath = function (startX, startY, dirX, dirY, length, chunkOffsetX, chunkOffsetY) { var currentX = startX; var currentY = startY; // Create corridor cells for (var i = 0; i < length; i++) { currentX += dirX; currentY += dirY; // Check bounds - stop if we're going outside the chunk or world if (currentX < chunkOffsetX + 1 || currentX >= chunkOffsetX + self.chunkSize - 1 || currentY < chunkOffsetY + 1 || currentY >= chunkOffsetY + self.chunkSize - 1 || currentX < 0 || currentX >= worldGrid.width || currentY < 0 || currentY >= worldGrid.height) { break; } // Carve out the corridor cell worldGrid.walls[currentX][currentY] = false; // Add some width to the corridor (occasionally) if (Math.random() < 0.3) { // Add perpendicular width var perpDirX = dirY; // Perpendicular direction var perpDirY = -dirX; var widthX = currentX + perpDirX; var widthY = currentY + perpDirY; if (widthX >= chunkOffsetX && widthX < chunkOffsetX + self.chunkSize && widthY >= chunkOffsetY && widthY < chunkOffsetY + self.chunkSize && widthX >= 0 && widthX < worldGrid.width && widthY >= 0 && widthY < worldGrid.height) { worldGrid.walls[widthX][widthY] = false; } } // Occasionally branch the dead-end if (i > 1 && Math.random() < 0.2) { // Create a short branch (1-2 cells) var branchLength = Math.floor(Math.random() * 2) + 1; var branchDirX = Math.random() < 0.5 ? dirY : -dirY; // Perpendicular directions var branchDirY = Math.random() < 0.5 ? -dirX : dirX; self.createDeadEndPath(currentX, currentY, branchDirX, branchDirY, branchLength, chunkOffsetX, chunkOffsetY); } } // Create a small room at the end of some dead-ends (30% chance) if (Math.random() < 0.3) { self.createDeadEndRoom(currentX, currentY, chunkOffsetX, chunkOffsetY); } }; // Create a small room at the end of a dead-end corridor self.createDeadEndRoom = function (centerX, centerY, chunkOffsetX, chunkOffsetY) { // Create a small 2x2 or 3x3 room var roomSize = Math.floor(Math.random() * 2) + 2; // 2x2 or 3x3 var halfSize = Math.floor(roomSize / 2); for (var dx = -halfSize; dx <= halfSize; dx++) { for (var dy = -halfSize; dy <= halfSize; dy++) { var roomX = centerX + dx; var roomY = centerY + dy; // Check bounds if (roomX >= chunkOffsetX && roomX < chunkOffsetX + self.chunkSize && roomY >= chunkOffsetY && roomY < chunkOffsetY + self.chunkSize && roomX >= 0 && roomX < worldGrid.width && roomY >= 0 && roomY < worldGrid.height) { worldGrid.walls[roomX][roomY] = false; } } } }; // Create guaranteed exits to adjacent chunks (legacy method for compatibility) self.createChunkExits = function (offsetX, offsetY, mainRoom) { // Use the new multiple exits method self.createMultipleChunkExits(offsetX, offsetY, [mainRoom]); }; // Create L-shaped corridor between two points with much shorter segments self.createCorridor = function (x1, y1, x2, y2) { // Create narrower corridors for shorter navigation paths var halfWidth = Math.floor(self.hallwayWidth / 2); // Calculate distance and limit corridor length to make them much shorter var dx = Math.abs(x2 - x1); var dy = Math.abs(y2 - y1); var maxCorridorLength = 3; // Maximum corridor segment length // If distance is too long, create intermediate points for shorter segments if (dx > maxCorridorLength || dy > maxCorridorLength) { var midX = x1 + Math.sign(x2 - x1) * Math.min(maxCorridorLength, dx); var midY = y1 + Math.sign(y2 - y1) * Math.min(maxCorridorLength, dy); // Create first short segment self.createShortSegment(x1, y1, midX, y1, halfWidth); // Create second short segment self.createShortSegment(midX, y1, midX, midY, halfWidth); // If we haven't reached the destination, create final segment if (midX !== x2 || midY !== y2) { self.createShortSegment(midX, midY, x2, y2, halfWidth); } } else { // Choose random direction for short L-shaped corridor if (Math.random() < 0.5) { // Horizontal first, then vertical - but keep it short self.createShortSegment(x1, y1, x2, y1, halfWidth); self.createShortSegment(x2, y1, x2, y2, halfWidth); } else { // Vertical first, then horizontal - but keep it short self.createShortSegment(x1, y1, x1, y2, halfWidth); self.createShortSegment(x1, y2, x2, y2, halfWidth); } } }; // Create a short corridor segment with limited length self.createShortSegment = function (x1, y1, x2, y2, halfWidth) { var startX = Math.min(x1, x2); var endX = Math.max(x1, x2); var startY = Math.min(y1, y2); var endY = Math.max(y1, y2); // Limit segment length to make corridors extremely short for claustrophobic effect var maxSegmentLength = 1; endX = Math.min(endX, startX + maxSegmentLength); endY = Math.min(endY, startY + maxSegmentLength); for (var x = startX; x <= endX; x++) { for (var y = startY; y <= endY; y++) { for (var w = -halfWidth; w <= halfWidth; w++) { var corridorX = x + (x1 === x2 ? w : 0); var corridorY = y + (y1 === y2 ? w : 0); if (corridorX >= 0 && corridorX < worldGrid.width && corridorY >= 0 && corridorY < worldGrid.height) { worldGrid.walls[corridorX][corridorY] = false; } } } } }; // Create curved and winding corridor between two points self.createCurvedCorridor = function (x1, y1, x2, y2) { var corridorType = Math.random(); var halfWidth = Math.floor(self.hallwayWidth / 2); if (corridorType < 0.3) { // S-shaped curve var midX = Math.floor((x1 + x2) / 2) + Math.floor(Math.random() * 4) - 2; var midY = Math.floor((y1 + y2) / 2) + Math.floor(Math.random() * 4) - 2; self.createSmoothPath(x1, y1, midX, midY); self.createSmoothPath(midX, midY, x2, y2); } else if (corridorType < 0.6) { // Zigzag corridor var steps = Math.floor(Math.abs(x2 - x1) + Math.abs(y2 - y1)) / 3; var currentX = x1; var currentY = y1; var stepX = (x2 - x1) / steps; var stepY = (y2 - y1) / steps; for (var i = 0; i < steps; i++) { var nextX = Math.floor(currentX + stepX + Math.random() * 2 - 1); var nextY = Math.floor(currentY + stepY + Math.random() * 2 - 1); self.createSmoothPath(Math.floor(currentX), Math.floor(currentY), nextX, nextY); currentX = nextX; currentY = nextY; } self.createSmoothPath(Math.floor(currentX), Math.floor(currentY), x2, y2); } else { // Wide curved path with multiple control points var controlPoints = []; controlPoints.push({ x: x1, y: y1 }); // Add 1-2 random control points var numControls = Math.floor(Math.random() * 2) + 1; for (var i = 0; i < numControls; i++) { var t = (i + 1) / (numControls + 1); var controlX = Math.floor(x1 + (x2 - x1) * t + Math.random() * 6 - 3); var controlY = Math.floor(y1 + (y2 - y1) * t + Math.random() * 6 - 3); controlPoints.push({ x: controlX, y: controlY }); } controlPoints.push({ x: x2, y: y2 }); // Connect all control points for (var i = 0; i < controlPoints.length - 1; i++) { self.createSmoothPath(controlPoints[i].x, controlPoints[i].y, controlPoints[i + 1].x, controlPoints[i + 1].y); } } }; // Create smooth path between two points with width - much shorter segments self.createSmoothPath = function (x1, y1, x2, y2) { var dx = x2 - x1; var dy = y2 - y1; var distance = Math.sqrt(dx * dx + dy * dy); // Limit path length to make corridors extremely short for claustrophobic effect var maxPathLength = 2; if (distance > maxPathLength) { // Create shorter intermediate path var ratio = maxPathLength / distance; x2 = Math.floor(x1 + dx * ratio); y2 = Math.floor(y1 + dy * ratio); dx = x2 - x1; dy = y2 - y1; distance = maxPathLength; } var steps = Math.min(Math.floor(distance) + 1, 2); // Very limited steps for tight spaces var halfWidth = Math.floor(self.hallwayWidth / 2); for (var i = 0; i <= steps; i++) { var t = i / steps; var x = Math.floor(x1 + dx * t); var y = Math.floor(y1 + dy * t); // Carve corridor with width for (var w = -halfWidth; w <= halfWidth; w++) { for (var h = -halfWidth; h <= halfWidth; h++) { var corridorX = x + w; var corridorY = y + h; if (corridorX >= 0 && corridorX < worldGrid.width && corridorY >= 0 && corridorY < worldGrid.height) { worldGrid.walls[corridorX][corridorY] = false; } } } } }; // Add pillars at coordinate system corners - only around player self.addRandomPillars = function (offsetX, offsetY) { // Get player position if available var playerX = player ? Math.floor(player.x / worldGrid.cellSize) : Math.floor(worldGrid.width / 2); var playerY = player ? Math.floor(player.y / worldGrid.cellSize) : Math.floor(worldGrid.height / 2); var playerRadius = 8; // Only generate pillars within 8 cells of player // Define corner positions within the chunk var cornerPositions = [ // Top-left corner of chunk { x: offsetX + 1, y: offsetY + 1 }, // Top-right corner of chunk { x: offsetX + self.chunkSize - 2, y: offsetY + 1 }, // Bottom-left corner of chunk { x: offsetX + 1, y: offsetY + self.chunkSize - 2 }, // Bottom-right corner of chunk { x: offsetX + self.chunkSize - 2, y: offsetY + self.chunkSize - 2 }]; // Try to place pillars at corner positions for (var i = 0; i < cornerPositions.length; i++) { var corner = cornerPositions[i]; var x = corner.x; var y = corner.y; // Ensure position is within world bounds if (x >= 0 && x < worldGrid.width && y >= 0 && y < worldGrid.height) { // Check if pillar position is within player radius var distanceToPlayer = Math.abs(x - playerX) + Math.abs(y - playerY); if (distanceToPlayer > playerRadius) { continue; // Skip if too far from player } // Only add pillars in open areas (50% chance at corners) if (!worldGrid.walls[x][y] && Math.random() < 0.5) { // Check if surrounded by enough open space (2x2 area around corner) var canPlace = true; for (var dx = 0; dx <= 1; dx++) { for (var dy = 0; dy <= 1; dy++) { var checkX = x + dx; var checkY = y + dy; if (checkX >= 0 && checkX < worldGrid.width && checkY >= 0 && checkY < worldGrid.height) { if (worldGrid.walls[checkX][checkY]) { canPlace = false; break; } } } if (!canPlace) { break; } } if (canPlace) { worldGrid.walls[x][y] = true; } } } } }; // Validate that all rooms are connected and fix any isolated rooms self.validateRoomConnectivity = function (rooms, offsetX, offsetY) { if (rooms.length <= 1) { return; } // Single room doesn't need validation // Use flood fill to check connectivity from main room var visited = []; for (var i = 0; i < rooms.length; i++) { visited[i] = false; } // Start flood fill from main room (first room) var connected = [0]; // Start with main room visited[0] = true; var changed = true; // Keep checking until no new connections are found while (changed) { changed = false; for (var i = 0; i < connected.length; i++) { var currentRoom = rooms[connected[i]]; // Check if any unvisited room is connected to this room for (var j = 0; j < rooms.length; j++) { if (!visited[j] && self.areRoomsConnected(currentRoom, rooms[j])) { visited[j] = true; connected.push(j); changed = true; } } } } // Connect any isolated rooms for (var i = 0; i < rooms.length; i++) { if (!visited[i]) { // This room is isolated, connect it to the nearest connected room var nearestConnectedRoom = rooms[connected[0]]; var minDistance = Infinity; for (var j = 0; j < connected.length; j++) { var connectedRoom = rooms[connected[j]]; var dx = rooms[i].centerX - connectedRoom.centerX; var dy = rooms[i].centerY - connectedRoom.centerY; var distance = Math.sqrt(dx * dx + dy * dy); if (distance < minDistance) { minDistance = distance; nearestConnectedRoom = connectedRoom; } } // Force connection to prevent isolation self.createCurvedCorridor(rooms[i].centerX, rooms[i].centerY, nearestConnectedRoom.centerX, nearestConnectedRoom.centerY); } } }; // Check if two rooms are connected via corridors self.areRoomsConnected = function (room1, room2) { // Use simple pathfinding to check if rooms are connected var visited = []; for (var x = 0; x < worldGrid.width; x++) { visited[x] = []; for (var y = 0; y < worldGrid.height; y++) { visited[x][y] = false; } } var stack = [{ x: room1.centerX, y: room1.centerY }]; while (stack.length > 0) { var current = stack.pop(); var gridX = Math.floor(current.x / worldGrid.cellSize) * worldGrid.cellSize; var gridY = Math.floor(current.y / worldGrid.cellSize) * worldGrid.cellSize; var arrayX = Math.floor(current.x / worldGrid.cellSize); var arrayY = Math.floor(current.y / worldGrid.cellSize); if (arrayX < 0 || arrayX >= worldGrid.width || arrayY < 0 || arrayY >= worldGrid.height) { continue; } if (visited[arrayX][arrayY] || worldGrid.walls[arrayX][arrayY]) { continue; } visited[arrayX][arrayY] = true; // Check if we reached room2 if (Math.abs(current.x - room2.centerX) < worldGrid.cellSize && Math.abs(current.y - room2.centerY) < worldGrid.cellSize) { return true; // Rooms are connected } // Add adjacent cells var directions = [{ dx: 1, dy: 0 }, { dx: -1, dy: 0 }, { dx: 0, dy: 1 }, { dx: 0, dy: -1 }]; for (var d = 0; d < directions.length; d++) { stack.push({ x: current.x + directions[d].dx * worldGrid.cellSize, y: current.y + directions[d].dy * worldGrid.cellSize }); } } return false; // No connection found }; // Get room size based on probability distribution - heavily favor small rooms for claustrophobia // Small rooms: 75%, Medium rooms: 20%, Large rooms: 5% self.getRoomSizeByProbability = function () { var random = Math.random() * 100; if (random < 75) { // Small rooms (75% probability) - 1x1 to 2x2 (mostly tiny) var size = Math.floor(Math.random() * 2) + 1; return { width: size, height: size }; } else if (random < 95) { // Medium rooms (20% probability) - 2x2 to 3x3 (reduced max size) var size = Math.floor(Math.random() * 2) + 2; return { width: size, height: size }; } else { // Large rooms (5% probability) - 3x3 to 4x4 (much smaller than before) var size = Math.floor(Math.random() * 2) + 3; return { width: size, height: size }; } }; // Generate chunks around player position self.generateAroundPlayer = function (playerX, playerY) { var playerChunkX = Math.floor(playerX / (worldGrid.cellSize * self.chunkSize)); var playerChunkY = Math.floor(playerY / (worldGrid.cellSize * self.chunkSize)); // Generate chunks in a 3x3 area around player for (var dx = -1; dx <= 1; dx++) { for (var dy = -1; dy <= 1; dy++) { var chunkX = playerChunkX + dx; var chunkY = playerChunkY + dy; self.generateChunk(chunkX, chunkY); } } }; // Add pillars specifically in medium and large rooms and also as standalone pillars in corridors - only around player self.addPillarsToRooms = function (offsetX, offsetY, rooms) { // Get player position if available var playerX = player ? Math.floor(player.x / worldGrid.cellSize) : Math.floor(worldGrid.width / 2); var playerY = player ? Math.floor(player.y / worldGrid.cellSize) : Math.floor(worldGrid.height / 2); var playerRadius = 8; // Only generate pillars within 8 cells of player for (var i = 0; i < rooms.length; i++) { var room = rooms[i]; var roomArea = room.width * room.height; // Check if room is within player radius var distanceToPlayer = Math.abs(room.centerX - playerX) + Math.abs(room.centerY - playerY); if (distanceToPlayer > playerRadius) { continue; // Skip room if too far from player } var pillarCount = 0; // Determine number of pillars based on room size - now includes small rooms if (roomArea >= 9) { // Large rooms (9+ cells): 2-4 pillars pillarCount = Math.floor(Math.random() * 3) + 2; } else if (roomArea >= 4) { // Medium rooms (4-8 cells): 1-2 pillars pillarCount = Math.floor(Math.random() * 2) + 1; } else if (roomArea >= 2) { // Small rooms (2-3 cells): 0-1 pillar with 40% probability if (Math.random() < 0.4) { pillarCount = 1; } } // Place pillars only in the center of rooms for (var p = 0; p < pillarCount; p++) { // Calculate exact room center var pillarX = room.x + Math.floor(room.width / 2); var pillarY = room.y + Math.floor(room.height / 2); // For rooms with even dimensions, slightly offset to avoid exact geometric center if (room.width % 2 === 0 && p % 2 === 1) { pillarX += Math.random() < 0.5 ? -1 : 1; } if (room.height % 2 === 0 && p % 3 === 1) { pillarY += Math.random() < 0.5 ? -1 : 1; } // Ensure pillar is within room bounds and world bounds if (pillarX >= room.x && pillarX < room.x + room.width && pillarY >= room.y && pillarY < room.y + room.height && pillarX >= 0 && pillarX < worldGrid.width && pillarY >= 0 && pillarY < worldGrid.height) { // Only place if position is currently open if (!worldGrid.walls[pillarX][pillarY]) { worldGrid.walls[pillarX][pillarY] = true; } } } } // Also add standalone pillars in corridor areas self.addStandalonePillarsInCorridors(offsetX, offsetY, rooms); }; // Check if a pillar can be placed at the given position (simplified for center placement) self.canPlacePillar = function (pillarX, pillarY, room, allRooms) { // Check that position is currently open (not already a wall) if (pillarX >= 0 && pillarX < worldGrid.width && pillarY >= 0 && pillarY < worldGrid.height) { if (worldGrid.walls[pillarX][pillarY]) { return false; // Already a wall } } // Since we're only placing in centers, just ensure the position is open return true; }; // Add standalone pillars at coordinate intersections - only around player and inside rooms self.addStandalonePillarsInCorridors = function (offsetX, offsetY, rooms) { // Get player position if available var playerX = player ? Math.floor(player.x / worldGrid.cellSize) : Math.floor(worldGrid.width / 2); var playerY = player ? Math.floor(player.y / worldGrid.cellSize) : Math.floor(worldGrid.height / 2); var playerRadius = 8; // Only generate pillars within 8 cells of player // Define coordinate intersection points within the chunk (grid intersections) var intersectionPoints = []; // Create a grid of intersection points every 2 cells for (var gridX = offsetX + 2; gridX < offsetX + self.chunkSize - 1; gridX += 2) { for (var gridY = offsetY + 2; gridY < offsetY + self.chunkSize - 1; gridY += 2) { intersectionPoints.push({ x: gridX, y: gridY }); } } // Try to place pillars at coordinate intersections (30% chance per intersection) for (var i = 0; i < intersectionPoints.length; i++) { var intersection = intersectionPoints[i]; var pillarX = intersection.x; var pillarY = intersection.y; // Check if pillar is within player radius var distanceToPlayer = Math.abs(pillarX - playerX) + Math.abs(pillarY - playerY); if (distanceToPlayer > playerRadius) { continue; // Skip if too far from player } // Check if position is in open corridor area (not in room and not wall) and near player if (self.isInCorridorArea(pillarX, pillarY, rooms) && self.canPlaceCorridorPillar(pillarX, pillarY) && Math.random() < 0.3) { if (pillarX >= 0 && pillarX < worldGrid.width && pillarY >= 0 && pillarY < worldGrid.height) { worldGrid.walls[pillarX][pillarY] = true; } } } }; // Check if position is in a corridor area (open space not in any room) self.isInCorridorArea = function (x, y, rooms) { // First check if position is open (not a wall) if (x < 0 || x >= worldGrid.width || y < 0 || y >= worldGrid.height) { return false; } if (worldGrid.walls[x][y]) { return false; // Already a wall } // Check if position is inside any room for (var i = 0; i < rooms.length; i++) { var room = rooms[i]; if (x >= room.x && x < room.x + room.width && y >= room.y && y < room.y + room.height) { return false; // Inside a room } } return true; // In corridor area }; // Check if a corridor pillar can be placed (ensure it doesn't block pathways) self.canPlaceCorridorPillar = function (x, y) { // Ensure there's enough space around the pillar (2x2 area check) var checkRadius = 1; var openSpaces = 0; var totalSpaces = 0; for (var dx = -checkRadius; dx <= checkRadius; dx++) { for (var dy = -checkRadius; dy <= checkRadius; dy++) { var checkX = x + dx; var checkY = y + dy; if (checkX >= 0 && checkX < worldGrid.width && checkY >= 0 && checkY < worldGrid.height) { totalSpaces++; if (!worldGrid.walls[checkX][checkY]) { openSpaces++; } } } } // Only place pillar if at least 60% of surrounding area is open return openSpaces >= totalSpaces * 0.6; }; // Ensure there's always a path to the door from generated chunks self.ensurePathToDoor = function (chunkOffsetX, chunkOffsetY, rooms) { if (!worldGrid.doorPosition || !pathfindingSystem) { return; } var doorGridX = worldGrid.doorPosition.gridX; var doorGridY = worldGrid.doorPosition.gridY; // Check if door is in this chunk if (doorGridX >= chunkOffsetX && doorGridX < chunkOffsetX + self.chunkSize && doorGridY >= chunkOffsetY && doorGridY < chunkOffsetY + self.chunkSize) { return; // Door is in this chunk, no need to create path } // Find the room closest to the door var closestRoom = null; var minDistance = Infinity; for (var i = 0; i < rooms.length; i++) { var room = rooms[i]; var dx = room.centerX - doorGridX; var dy = room.centerY - doorGridY; var distance = Math.sqrt(dx * dx + dy * dy); if (distance < minDistance) { minDistance = distance; closestRoom = room; } } if (closestRoom) { // Create path from closest room toward door direction var directionToDoorX = doorGridX > closestRoom.centerX ? 1 : doorGridX < closestRoom.centerX ? -1 : 0; var directionToDoorY = doorGridY > closestRoom.centerY ? 1 : doorGridY < closestRoom.centerY ? -1 : 0; // Create corridor leading toward door var corridorLength = Math.min(self.chunkSize - 2, 4); var startX = closestRoom.centerX; var startY = closestRoom.centerY; // Create path toward chunk boundary in door direction for (var step = 0; step < corridorLength; step++) { var pathX = startX + directionToDoorX * step; var pathY = startY + directionToDoorY * step; // Ensure path coordinates are within chunk and world bounds if (pathX >= chunkOffsetX && pathX < chunkOffsetX + self.chunkSize && pathY >= chunkOffsetY && pathY < chunkOffsetY + self.chunkSize && pathX >= 0 && pathX < worldGrid.width && pathY >= 0 && pathY < worldGrid.height) { // Clear path cell and adjacent cells for width worldGrid.walls[pathX][pathY] = false; // Add width to corridor if (directionToDoorX !== 0) { if (pathY + 1 < worldGrid.height && pathY + 1 < chunkOffsetY + self.chunkSize) { worldGrid.walls[pathX][pathY + 1] = false; } if (pathY - 1 >= 0 && pathY - 1 >= chunkOffsetY) { worldGrid.walls[pathX][pathY - 1] = false; } } else { if (pathX + 1 < worldGrid.width && pathX + 1 < chunkOffsetX + self.chunkSize) { worldGrid.walls[pathX + 1][pathY] = false; } if (pathX - 1 >= 0 && pathX - 1 >= chunkOffsetX) { worldGrid.walls[pathX - 1][pathY] = false; } } } } // Create exit at chunk boundary toward door var exitX = startX + directionToDoorX * corridorLength; var exitY = startY + directionToDoorY * corridorLength; // Ensure exit is at chunk boundary if (directionToDoorX > 0) { exitX = Math.min(exitX, chunkOffsetX + self.chunkSize - 1); } else if (directionToDoorX < 0) { exitX = Math.max(exitX, chunkOffsetX); } if (directionToDoorY > 0) { exitY = Math.min(exitY, chunkOffsetY + self.chunkSize - 1); } else if (directionToDoorY < 0) { exitY = Math.max(exitY, chunkOffsetY); } // Clear the exit point if (exitX >= 0 && exitX < worldGrid.width && exitY >= 0 && exitY < worldGrid.height) { worldGrid.walls[exitX][exitY] = false; } } }; return self; }); var RaycastRenderer = Container.expand(function () { var self = Container.call(this); self.screenWidth = 2732; self.screenHeight = 2048; self.numRays = 128; // Number of rays to cast self.wallColumns = []; self.floorColumns = []; self.ceilingColumns = []; // Initialize rendering columns for (var i = 0; i < self.numRays; i++) { var stripWidth = self.screenWidth / self.numRays; // Wall column var wallCol = self.addChild(LK.getAsset('wallSegment', { anchorX: 0.5, anchorY: 0.5 })); wallCol.x = i * stripWidth + stripWidth / 2; wallCol.y = self.screenHeight / 2; wallCol.width = stripWidth + 1; // Small overlap to prevent gaps wallCol.visible = false; self.wallColumns.push(wallCol); // Floor column var floorCol = self.addChild(LK.getAsset('floorStrip', { anchorX: 0.5, anchorY: 0 })); floorCol.x = i * stripWidth + stripWidth / 2; floorCol.width = stripWidth + 1; floorCol.visible = false; self.floorColumns.push(floorCol); // Ceiling column var ceilCol = self.addChild(LK.getAsset('ceilingStrip', { anchorX: 0.5, anchorY: 1 })); ceilCol.x = i * stripWidth + stripWidth / 2; ceilCol.width = stripWidth + 1; ceilCol.visible = false; self.ceilingColumns.push(ceilCol); } self.render = function (player) { var fov = Math.PI / 2; // 90 degrees field of view for classic raycasting var halfFov = fov / 2; var stripWidth = self.screenWidth / self.numRays; var screenCenter = self.screenHeight / 2; var pitchOffset = player.pitch * 300; // Cast rays across the field of view for (var i = 0; i < self.numRays; i++) { var rayAngle = player.angle - halfFov + i / self.numRays * fov; var rayData = self.castRay(player.x, player.y, rayAngle); var distance = rayData.distance; var wallHeight = 0; var wallCol = self.wallColumns[i]; var floorCol = self.floorColumns[i]; floorCol.height = self.screenHeight - wallHeight; // Extend floor strip to cover entire floor area var ceilCol = self.ceilingColumns[i]; // Check if column is within strict horizontal screen bounds var columnX = wallCol.x; var withinBounds = columnX >= 0 && columnX <= self.screenWidth; if (rayData.hit && withinBounds) { // Fish-eye correction var correctedDistance = distance * Math.cos(rayAngle - player.angle); // Calculate wall height based on distance wallHeight = Math.max(50, worldGrid.cellSize * 800 / (correctedDistance + 1)); // Wall rendering wallCol.height = wallHeight; wallCol.x = Math.max(0, Math.min(self.screenWidth, wallCol.x)); // Clamp X position to screen bounds wallCol.y = screenCenter + pitchOffset; wallCol.visible = true; // Distance-based shading with special door rendering var shadingFactor = Math.max(0.15, 1.0 - correctedDistance / 800); var tintValue = 0xFFFFFF; // Special rendering for door - make it distinct and always visible if (self.lastHitType === 'door') { // Use bright glitchy colors for door visibility var doorColors = [0xFFFFFF, 0x00FFFF, 0xFFFF00, 0xFF00FF]; var colorIndex = Math.floor(LK.ticks * 0.2 % doorColors.length); wallCol.tint = doorColors[colorIndex]; // Ensure door is always visible with strong contrast wallCol.alpha = 1.0; // Make door walls slightly taller for better visibility wallCol.height = wallHeight * 1.2; } else { wallCol.tint = tintValue; wallCol.alpha = 1.0; } // Floor rendering with distance-based shading var wallBottom = screenCenter + wallHeight / 2 + pitchOffset; var floorHeight = self.screenHeight - wallBottom; floorCol.y = wallBottom; floorCol.height = Math.max(1, floorHeight); floorCol.visible = true; // Apply distance-based shading to the floor var floorShadingFactor = Math.max(0.2, 1.0 - correctedDistance / 800); floorCol.tint = 0xFFFFFF; // Ceiling rendering var ceilHeight = screenCenter - wallHeight / 2 + pitchOffset; ceilCol.y = ceilHeight; ceilCol.height = Math.max(1, ceilHeight); ceilCol.visible = true; ceilCol.tint = 0xFFFFFF; } else { // No wall hit or outside bounds - hide columns wallCol.visible = false; floorCol.visible = false; ceilCol.visible = false; } } }; // DDA (Digital Differential Analyzer) raycasting algorithm self.castRay = function (startX, startY, angle) { var rayX = startX; var rayY = startY; var rayDirX = Math.cos(angle); var rayDirY = Math.sin(angle); // Which grid cell we're in var mapX = Math.floor(rayX / worldGrid.cellSize); var mapY = Math.floor(rayY / worldGrid.cellSize); // Length of ray from current position to x or y side var deltaDistX = Math.abs(1 / rayDirX); var deltaDistY = Math.abs(1 / rayDirY); // Calculate step and initial sideDist var stepX, sideDistX; var stepY, sideDistY; if (rayDirX < 0) { stepX = -1; sideDistX = (rayX / worldGrid.cellSize - mapX) * deltaDistX; } else { stepX = 1; sideDistX = (mapX + 1.0 - rayX / worldGrid.cellSize) * deltaDistX; } if (rayDirY < 0) { stepY = -1; sideDistY = (rayY / worldGrid.cellSize - mapY) * deltaDistY; } else { stepY = 1; sideDistY = (mapY + 1.0 - rayY / worldGrid.cellSize) * deltaDistY; } // Perform DDA var hit = false; var side = 0; // 0 if x-side, 1 if y-side var maxSteps = 100; var steps = 0; while (!hit && steps < maxSteps) { steps++; // Jump to next map square, either in x-direction, or in y-direction if (sideDistX < sideDistY) { sideDistX += deltaDistX; mapX += stepX; side = 0; } else { sideDistY += deltaDistY; mapY += stepY; side = 1; } // Check if ray has hit a wall or door var checkX = mapX * worldGrid.cellSize; var checkY = mapY * worldGrid.cellSize; var hitWall = worldGrid.hasWallAt(checkX, checkY); var hitDoor = worldGrid.hasDoorAt(checkX, checkY); if (hitWall || hitDoor) { hit = true; // Store what type of surface was hit for special rendering self.lastHitType = hitDoor ? 'door' : 'wall'; } } var distance = 0; if (hit) { // Calculate distance if (side === 0) { distance = (mapX - rayX / worldGrid.cellSize + (1 - stepX) / 2) / rayDirX; } else { distance = (mapY - rayY / worldGrid.cellSize + (1 - stepY) / 2) / rayDirY; } distance = Math.abs(distance * worldGrid.cellSize); } return { hit: hit, distance: distance, side: side, mapX: mapX, mapY: mapY }; }; return self; }); var SensitivityConfig = Container.expand(function () { var self = Container.call(this); // Load saved sensitivity or default to 50 self.sensitivity = storage.sensitivity || 50; self.isVisible = false; // Create background panel var background = self.addChild(LK.getAsset('untexturedArea', { anchorX: 0, anchorY: 0, width: 300, height: 200, alpha: 0.8 })); background.tint = 0x222222; // Create title text var titleText = new Text2('Sensitivity', { size: 40, fill: 0xFFFFFF }); titleText.anchor.set(0.5, 0); titleText.x = 150; titleText.y = 20; self.addChild(titleText); // Create sensitivity value text var valueText = new Text2(self.sensitivity.toString(), { size: 35, fill: 0xFFFFFF }); valueText.anchor.set(0.5, 0); valueText.x = 150; valueText.y = 70; self.addChild(valueText); // Create decrease button (larger for mobile) var decreaseBtn = self.addChild(LK.getAsset('untexturedArea', { anchorX: 0.5, anchorY: 0.5, width: 70, height: 60 })); decreaseBtn.x = 80; decreaseBtn.y = 130; decreaseBtn.tint = 0x666666; var decreaseText = new Text2('-', { size: 40, fill: 0xFFFFFF }); decreaseText.anchor.set(0.5, 0.5); decreaseText.x = 80; decreaseText.y = 130; self.addChild(decreaseText); // Create increase button (larger for mobile) var increaseBtn = self.addChild(LK.getAsset('untexturedArea', { anchorX: 0.5, anchorY: 0.5, width: 70, height: 60 })); increaseBtn.x = 220; increaseBtn.y = 130; increaseBtn.tint = 0x666666; var increaseText = new Text2('+', { size: 40, fill: 0xFFFFFF }); increaseText.anchor.set(0.5, 0.5); increaseText.x = 220; increaseText.y = 130; self.addChild(increaseText); // Update sensitivity display self.updateDisplay = function () { valueText.setText(self.sensitivity.toString()); // Save to storage storage.sensitivity = self.sensitivity; }; // Toggle visibility self.toggle = function () { self.isVisible = !self.isVisible; self.visible = self.isVisible; }; // Handle decrease button with visual feedback decreaseBtn.down = function (x, y, obj) { decreaseBtn.tint = 0x888888; // Lighten on press if (self.sensitivity > 0) { self.sensitivity = Math.max(0, self.sensitivity - 5); self.updateDisplay(); } }; decreaseBtn.up = function (x, y, obj) { decreaseBtn.tint = 0x666666; // Reset color on release }; // Handle increase button with visual feedback increaseBtn.down = function (x, y, obj) { increaseBtn.tint = 0x888888; // Lighten on press if (self.sensitivity < 100) { self.sensitivity = Math.min(100, self.sensitivity + 5); self.updateDisplay(); } }; increaseBtn.up = function (x, y, obj) { increaseBtn.tint = 0x666666; // Reset color on release }; // Add background click handler to prevent game interactions background.down = function (x, y, obj) { // Prevent event from bubbling to game return true; }; background.up = function (x, y, obj) { // Prevent event from bubbling to game return true; }; background.move = function (x, y, obj) { // Prevent event from bubbling to game return true; }; // Initially hidden self.visible = false; return self; }); /**** * Initialize Game ****/ // Create player var game = new LK.Game({ backgroundColor: 0x000000, orientation: 'landscape', width: 2732, height: 2048 }); /**** * Game Code ****/ // World coordinate system - grid-based layout with procedural generation var worldGrid = { cellSize: 200, width: 100, // Expanded world size for infinite generation height: 100, walls: [], // Will store wall positions // Initialize world grid with walls initializeGrid: function initializeGrid() { // Initialize walls array first - fill entire world with walls initially this.walls = []; for (var x = 0; x < this.width; x++) { this.walls[x] = []; for (var y = 0; y < this.height; y++) { // Start with all walls - procedural generation will carve out spaces this.walls[x][y] = true; } } // Create a starting room around spawn point (3x3 room) var spawnX = Math.floor(this.width / 2); var spawnY = Math.floor(this.height / 2); for (var x = spawnX - 1; x <= spawnX + 1; x++) { for (var y = spawnY - 1; y <= spawnY + 1; y++) { if (x >= 0 && x < this.width && y >= 0 && y < this.height) { this.walls[x][y] = false; } } } }, // Check if a grid position is a floor isFloor: function isFloor(gridX, gridY) { // Define logic to determine if a grid position is a floor // For now, assume any position not marked as a wall is a floor return !this.walls[gridX][gridY]; }, // Check if a world position has a wall hasWallAt: function hasWallAt(worldX, worldY) { var gridX = Math.floor(worldX / this.cellSize); var gridY = Math.floor(worldY / this.cellSize); if (gridX < 0 || gridX >= this.width || gridY < 0 || gridY >= this.height) { return true; // Outside bounds = wall } return this.walls[gridX][gridY]; }, // Check collision with wall boundaries (with player radius) - improved precision checkCollision: function checkCollision(worldX, worldY, radius) { radius = radius || 20; // Default player radius // Enhanced bounds checking with safety margin if (worldX < radius || worldX >= this.width * this.cellSize - radius || worldY < radius || worldY >= this.height * this.cellSize - radius) { return true; // Outside safe bounds = collision } // More comprehensive collision check - check multiple points around player circle var checkPoints = [ // Center point { x: worldX, y: worldY }, // Cardinal directions (primary edges) { x: worldX - radius, y: worldY }, // Left { x: worldX + radius, y: worldY }, // Right { x: worldX, y: worldY - radius }, // Top { x: worldX, y: worldY + radius }, // Bottom // Diagonal corners for better corner collision detection { x: worldX - radius * 0.7, y: worldY - radius * 0.7 }, // Top-left { x: worldX + radius * 0.7, y: worldY - radius * 0.7 }, // Top-right { x: worldX - radius * 0.7, y: worldY + radius * 0.7 }, // Bottom-left { x: worldX + radius * 0.7, y: worldY + radius * 0.7 }, // Bottom-right // Additional edge points for smoother wall sliding { x: worldX - radius * 0.5, y: worldY }, // Half-left { x: worldX + radius * 0.5, y: worldY }, // Half-right { x: worldX, y: worldY - radius * 0.5 }, // Half-top { x: worldX, y: worldY + radius * 0.5 } // Half-bottom ]; for (var i = 0; i < checkPoints.length; i++) { var point = checkPoints[i]; var pointGridX = Math.floor(point.x / this.cellSize); var pointGridY = Math.floor(point.y / this.cellSize); // Enhanced bounds check if (pointGridX < 0 || pointGridX >= this.width || pointGridY < 0 || pointGridY >= this.height) { return true; } // Check wall collision if (this.walls[pointGridX][pointGridY] && !this.isFloor(pointGridX, pointGridY)) { return true; } } return false; }, // Convert screen coordinates to world coordinates screenToWorld: function screenToWorld(screenX, screenY) { return { x: screenX, y: screenY }; }, // Convert world coordinates to screen coordinates worldToScreen: function worldToScreen(worldX, worldY) { return { x: worldX, y: worldY }; }, // Enhanced collision checking with distance-based precision checkPreciseCollision: function checkPreciseCollision(worldX, worldY, radius, direction) { radius = radius || 20; // Calculate multiple check points based on movement direction var checkPoints = []; var numPoints = 8; // More points for better precision // Add center point checkPoints.push({ x: worldX, y: worldY }); // Add circular check points around player for (var i = 0; i < numPoints; i++) { var angle = i / numPoints * Math.PI * 2; checkPoints.push({ x: worldX + Math.cos(angle) * radius, y: worldY + Math.sin(angle) * radius }); } // Check each point for collision for (var i = 0; i < checkPoints.length; i++) { var point = checkPoints[i]; if (this.hasWallAt(point.x, point.y)) { return true; } } return false; }, // Check if player can move to position with wall sliding support canMoveTo: function canMoveTo(fromX, fromY, toX, toY, radius) { radius = radius || 20; // Direct movement check if (!this.checkCollision(toX, toY, radius)) { return { canMove: true, newX: toX, newY: toY }; } // Try wall sliding - horizontal only if (!this.checkCollision(toX, fromY, radius)) { return { canMove: true, newX: toX, newY: fromY }; } // Try wall sliding - vertical only if (!this.checkCollision(fromX, toY, radius)) { return { canMove: true, newX: fromX, newY: toY }; } // No valid movement return { canMove: false, newX: fromX, newY: fromY }; } }; // Initialize the world grid worldGrid.initializeGrid(); // Create guaranteed spawn rooms at each corner (3x3 rooms) var spawnCorners = [ // Top-left corner { gridX: 1, gridY: 1 }, // Top-right corner { gridX: worldGrid.width - 4, gridY: 1 }, // Bottom-left corner { gridX: 1, gridY: worldGrid.height - 4 }, // Bottom-right corner { gridX: worldGrid.width - 4, gridY: worldGrid.height - 4 }]; // Create guaranteed spawn rooms at each corner (5x5 rooms for better safety) for (var i = 0; i < spawnCorners.length; i++) { var corner = spawnCorners[i]; // Create larger 5x5 rooms at corners to ensure safe spawning for (var x = corner.gridX; x < corner.gridX + 5; x++) { for (var y = corner.gridY; y < corner.gridY + 5; y++) { if (x >= 0 && x < worldGrid.width && y >= 0 && y < worldGrid.height) { worldGrid.walls[x][y] = false; } } } // Also create a connecting corridor from each corner room to ensure connectivity var centerX = corner.gridX + 2; // Center of 5x5 room var centerY = corner.gridY + 2; var worldCenterX = Math.floor(worldGrid.width / 2); var worldCenterY = Math.floor(worldGrid.height / 2); // Create corridor toward world center (horizontal first, then vertical) var corridorLength = 3; // Length of connecting corridor if (centerX < worldCenterX) { // Corridor going right for (var x = centerX + 2; x < centerX + 2 + corridorLength && x < worldGrid.width; x++) { for (var y = centerY - 1; y <= centerY + 1 && y >= 0 && y < worldGrid.height; y++) { worldGrid.walls[x][y] = false; } } } else { // Corridor going left for (var x = centerX - 2; x > centerX - 2 - corridorLength && x >= 0; x--) { for (var y = centerY - 1; y <= centerY + 1 && y >= 0 && y < worldGrid.height; y++) { worldGrid.walls[x][y] = false; } } } if (centerY < worldCenterY) { // Corridor going down for (var y = centerY + 2; y < centerY + 2 + corridorLength && y < worldGrid.height; y++) { for (var x = centerX - 1; x <= centerX + 1 && x >= 0 && x < worldGrid.width; x++) { worldGrid.walls[x][y] = false; } } } else { // Corridor going up for (var y = centerY - 2; y > centerY - 2 - corridorLength && y >= 0; y--) { for (var x = centerX - 1; x <= centerX + 1 && x >= 0 && x < worldGrid.width; x++) { worldGrid.walls[x][y] = false; } } } } // Create pathfinding system var pathfindingSystem = new PathfindingSystem(); // Create procedural generator var procGen = new ProcGen(); // Generate initial chunks around spawn point procGen.generateAroundPlayer(worldGrid.width * worldGrid.cellSize / 2, worldGrid.height * worldGrid.cellSize / 2); // Add wall line completion system worldGrid.completeWallLines = function () { // Trace horizontal lines and complete them for (var y = 0; y < this.height; y++) { var wallStart = -1; var wallEnd = -1; // Find wall segments in this row for (var x = 0; x < this.width; x++) { if (this.walls[x][y]) { if (wallStart === -1) { wallStart = x; // Start of wall segment } wallEnd = x; // Update end of wall segment } else { // If we found a wall segment, complete the line between start and end if (wallStart !== -1 && wallEnd !== -1 && wallEnd > wallStart) { for (var fillX = wallStart; fillX <= wallEnd; fillX++) { this.walls[fillX][y] = true; // Fill the gap } } wallStart = -1; // Reset for next segment wallEnd = -1; } } // Complete any remaining segment at end of row if (wallStart !== -1 && wallEnd !== -1 && wallEnd > wallStart) { for (var fillX = wallStart; fillX <= wallEnd; fillX++) { this.walls[fillX][y] = true; } } } // Trace vertical lines and complete them for (var x = 0; x < this.width; x++) { var wallStart = -1; var wallEnd = -1; // Find wall segments in this column for (var y = 0; y < this.height; y++) { if (this.walls[x][y]) { if (wallStart === -1) { wallStart = y; // Start of wall segment } wallEnd = y; // Update end of wall segment } else { // If we found a wall segment, complete the line between start and end if (wallStart !== -1 && wallEnd !== -1 && wallEnd > wallStart) { for (var fillY = wallStart; fillY <= wallEnd; fillY++) { this.walls[x][fillY] = true; // Fill the gap } } wallStart = -1; // Reset for next segment wallEnd = -1; } } // Complete any remaining segment at end of column if (wallStart !== -1 && wallEnd !== -1 && wallEnd > wallStart) { for (var fillY = wallStart; fillY <= wallEnd; fillY++) { this.walls[x][fillY] = true; } } } }; // Apply wall line completion after initial generation worldGrid.completeWallLines(); // Add dead-end detection system that preserves room connectivity worldGrid.detectAndFillDeadEnds = function () { // Find small isolated areas (not connected to main network) and mark them as walls var visited = []; // Initialize visited array for (var x = 0; x < this.width; x++) { visited[x] = []; for (var y = 0; y < this.height; y++) { visited[x][y] = false; } } // Function to check if an area is a meaningful connected space var isSignificantArea = function isSignificantArea(startX, startY) { if (worldGrid.walls[startX][startY]) { return true; } // Wall positions are fine if (visited[startX][startY]) { return true; } // Already processed var localVisited = []; for (var x = 0; x < worldGrid.width; x++) { localVisited[x] = []; for (var y = 0; y < worldGrid.height; y++) { localVisited[x][y] = false; } } var area = []; var stack = [{ x: startX, y: startY }]; var hasChunkExit = false; // Flood fill to find connected area while (stack.length > 0) { var current = stack.pop(); var x = current.x; var y = current.y; if (x < 0 || x >= worldGrid.width || y < 0 || y >= worldGrid.height) { continue; } if (localVisited[x][y] || worldGrid.walls[x][y]) { continue; } localVisited[x][y] = true; visited[x][y] = true; // Mark as processed in main visited array area.push({ x: x, y: y }); // Check if this area connects to chunk boundaries (significant exit) if (x <= 1 || x >= worldGrid.width - 2 || y <= 1 || y >= worldGrid.height - 2) { hasChunkExit = true; } // Add adjacent cells var directions = [{ dx: 1, dy: 0 }, { dx: -1, dy: 0 }, { dx: 0, dy: 1 }, { dx: 0, dy: -1 }]; for (var d = 0; d < directions.length; d++) { stack.push({ x: x + directions[d].dx, y: y + directions[d].dy }); } } // Only fill small areas (less than 8 cells) that don't connect to chunk boundaries if (area.length < 8 && !hasChunkExit) { for (var i = 0; i < area.length; i++) { worldGrid.walls[area[i].x][area[i].y] = true; } return false; // Area was filled } return true; // Area is significant and kept }; // Check all open areas for significance for (var x = 0; x < this.width; x++) { for (var y = 0; y < this.height; y++) { if (!visited[x][y] && !this.walls[x][y]) { isSignificantArea(x, y); } } } }; // Apply dead-end detection after wall completion worldGrid.detectAndFillDeadEnds(); // Add passage recognition system worldGrid.passageRecognition = function () { // Find all isolated rooms (areas without proper exits) var isolatedRooms = this.findIsolatedRooms(); // Create passages for isolated rooms for (var i = 0; i < isolatedRooms.length; i++) { this.createPassageForRoom(isolatedRooms[i]); } }; // Find rooms that don't have adequate exits worldGrid.findIsolatedRooms = function () { var visited = []; var isolatedRooms = []; // Initialize visited array for (var x = 0; x < this.width; x++) { visited[x] = []; for (var y = 0; y < this.height; y++) { visited[x][y] = false; } } // Check each open area for connectivity for (var x = 1; x < this.width - 1; x++) { for (var y = 1; y < this.height - 1; y++) { if (!this.walls[x][y] && !visited[x][y]) { var room = this.analyzeRoom(x, y, visited); if (room && room.area.length >= 4) { // Only consider rooms with at least 4 cells var exitCount = this.countRoomExits(room); if (exitCount === 0) { isolatedRooms.push(room); } } } } } return isolatedRooms; }; // Analyze a room starting from given coordinates worldGrid.analyzeRoom = function (startX, startY, visited) { var room = { area: [], bounds: { minX: startX, maxX: startX, minY: startY, maxY: startY }, center: { x: 0, y: 0 } }; var stack = [{ x: startX, y: startY }]; while (stack.length > 0) { var current = stack.pop(); var x = current.x; var y = current.y; if (x < 0 || x >= this.width || y < 0 || y >= this.height) { continue; } if (visited[x][y] || this.walls[x][y]) { continue; } visited[x][y] = true; room.area.push({ x: x, y: y }); // Update bounds room.bounds.minX = Math.min(room.bounds.minX, x); room.bounds.maxX = Math.max(room.bounds.maxX, x); room.bounds.minY = Math.min(room.bounds.minY, y); room.bounds.maxY = Math.max(room.bounds.maxY, y); // Add adjacent cells var directions = [{ dx: 1, dy: 0 }, { dx: -1, dy: 0 }, { dx: 0, dy: 1 }, { dx: 0, dy: -1 }]; for (var d = 0; d < directions.length; d++) { stack.push({ x: x + directions[d].dx, y: y + directions[d].dy }); } } // Calculate center if (room.area.length > 0) { var centerX = Math.floor((room.bounds.minX + room.bounds.maxX) / 2); var centerY = Math.floor((room.bounds.minY + room.bounds.maxY) / 2); room.center = { x: centerX, y: centerY }; } return room.area.length > 0 ? room : null; }; // Count the number of exits a room has worldGrid.countRoomExits = function (room) { var exits = 0; var checkedPositions = []; // Check room perimeter for connections to other areas for (var i = 0; i < room.area.length; i++) { var cell = room.area[i]; var directions = [{ dx: 1, dy: 0 }, { dx: -1, dy: 0 }, { dx: 0, dy: 1 }, { dx: 0, dy: -1 }]; for (var d = 0; d < directions.length; d++) { var checkX = cell.x + directions[d].dx; var checkY = cell.y + directions[d].dy; // Skip if out of bounds if (checkX < 0 || checkX >= this.width || checkY < 0 || checkY >= this.height) { continue; } // If we find an open area that's not part of this room, it's a potential exit if (!this.walls[checkX][checkY]) { var isPartOfRoom = false; for (var j = 0; j < room.area.length; j++) { if (room.area[j].x === checkX && room.area[j].y === checkY) { isPartOfRoom = true; break; } } if (!isPartOfRoom) { // Check if this exit position was already counted var posKey = checkX + ',' + checkY; var alreadyCounted = false; for (var k = 0; k < checkedPositions.length; k++) { if (checkedPositions[k] === posKey) { alreadyCounted = true; break; } } if (!alreadyCounted) { exits++; checkedPositions.push(posKey); } } } } } return exits; }; // Create a passage for an isolated room worldGrid.createPassageForRoom = function (room) { if (!room || room.area.length === 0) { return; } // Find the best direction to create a passage var directions = [{ dx: 1, dy: 0, name: 'east' }, { dx: -1, dy: 0, name: 'west' }, { dx: 0, dy: 1, name: 'south' }, { dx: 0, dy: -1, name: 'north' }]; var bestDirection = null; var shortestDistance = Infinity; // For each direction, find the shortest path to open space for (var d = 0; d < directions.length; d++) { var dir = directions[d]; var distance = this.findDistanceToOpenSpace(room.center.x, room.center.y, dir.dx, dir.dy); if (distance < shortestDistance && distance > 0) { shortestDistance = distance; bestDirection = dir; } } // Create passage in the best direction if (bestDirection && shortestDistance <= 5) { // Limit passage length this.createPassageInDirection(room.center.x, room.center.y, bestDirection.dx, bestDirection.dy, shortestDistance); } else { // If no good direction found, create a passage to the nearest chunk boundary this.createPassageToChunkBoundary(room); } }; // Find distance to open space in a given direction worldGrid.findDistanceToOpenSpace = function (startX, startY, dirX, dirY) { var distance = 0; var maxDistance = 6; // Limit search distance for (var i = 1; i <= maxDistance; i++) { var checkX = startX + dirX * i; var checkY = startY + dirY * i; // Check bounds if (checkX < 1 || checkX >= this.width - 1 || checkY < 1 || checkY >= this.height - 1) { return maxDistance + 1; // Out of bounds } // If we find open space, return distance if (!this.walls[checkX][checkY]) { return i; } distance = i; } return distance; }; // Create a passage in the specified direction worldGrid.createPassageInDirection = function (startX, startY, dirX, dirY, length) { for (var i = 0; i <= length; i++) { var passageX = startX + dirX * i; var passageY = startY + dirY * i; // Ensure passage coordinates are valid if (passageX >= 0 && passageX < this.width && passageY >= 0 && passageY < this.height) { this.walls[passageX][passageY] = false; // Create wider passage (2 cells wide) for better navigation if (dirX !== 0) { // Horizontal passage if (passageY + 1 < this.height) { this.walls[passageX][passageY + 1] = false; } if (passageY - 1 >= 0) { this.walls[passageX][passageY - 1] = false; } } else { // Vertical passage if (passageX + 1 < this.width) { this.walls[passageX + 1][passageY] = false; } if (passageX - 1 >= 0) { this.walls[passageX - 1][passageY] = false; } } } } }; // Create passage to chunk boundary if no nearby open space worldGrid.createPassageToChunkBoundary = function (room) { var centerX = room.center.x; var centerY = room.center.y; // Find closest chunk boundary var distanceToLeft = centerX; var distanceToRight = this.width - 1 - centerX; var distanceToTop = centerY; var distanceToBottom = this.height - 1 - centerY; var minDistance = Math.min(distanceToLeft, distanceToRight, distanceToTop, distanceToBottom); if (minDistance === distanceToLeft) { // Create passage to left boundary this.createPassageInDirection(centerX, centerY, -1, 0, distanceToLeft); } else if (minDistance === distanceToRight) { // Create passage to right boundary this.createPassageInDirection(centerX, centerY, 1, 0, distanceToRight); } else if (minDistance === distanceToTop) { // Create passage to top boundary this.createPassageInDirection(centerX, centerY, 0, -1, distanceToTop); } else { // Create passage to bottom boundary this.createPassageInDirection(centerX, centerY, 0, 1, distanceToBottom); } }; // Apply passage recognition system after dead-end detection worldGrid.passageRecognition(); // Add method to check for isolated areas near player and create passages worldGrid.checkPlayerProximityForPassages = function (playerX, playerY) { var playerGridX = Math.floor(playerX / this.cellSize); var playerGridY = Math.floor(playerY / this.cellSize); var checkRadius = 8; // Check 8 grid cells around player // Check areas around player for potential isolation for (var dx = -checkRadius; dx <= checkRadius; dx++) { for (var dy = -checkRadius; dy <= checkRadius; dy++) { var checkX = playerGridX + dx; var checkY = playerGridY + dy; // Skip if out of bounds if (checkX < 1 || checkX >= this.width - 1 || checkY < 1 || checkY >= this.height - 1) { continue; } // If this is an open area, check if it needs a passage if (!this.walls[checkX][checkY]) { var needsPassage = this.checkIfAreaNeedsPassage(checkX, checkY, playerGridX, playerGridY); if (needsPassage) { this.createEmergencyPassage(checkX, checkY, playerGridX, playerGridY); } } } } }; // Check if an area needs an emergency passage worldGrid.checkIfAreaNeedsPassage = function (areaX, areaY, playerX, playerY) { // Quick flood fill to check if this area has limited connectivity var visited = []; for (var x = 0; x < this.width; x++) { visited[x] = []; for (var y = 0; y < this.height; y++) { visited[x][y] = false; } } var reachableCells = []; var stack = [{ x: areaX, y: areaY }]; var hasChunkExit = false; while (stack.length > 0 && reachableCells.length < 50) { // Limit search for performance var current = stack.pop(); var x = current.x; var y = current.y; if (x < 0 || x >= this.width || y < 0 || y >= this.height) { continue; } if (visited[x][y] || this.walls[x][y]) { continue; } visited[x][y] = true; reachableCells.push({ x: x, y: y }); // Check if area connects to chunk boundaries if (x <= 2 || x >= this.width - 3 || y <= 2 || y >= this.height - 3) { hasChunkExit = true; } // Add adjacent cells var directions = [{ dx: 1, dy: 0 }, { dx: -1, dy: 0 }, { dx: 0, dy: 1 }, { dx: 0, dy: -1 }]; for (var d = 0; d < directions.length; d++) { stack.push({ x: x + directions[d].dx, y: y + directions[d].dy }); } } // If area is small and doesn't connect to chunk boundaries, it needs a passage return reachableCells.length < 20 && !hasChunkExit; }; // Create an emergency passage from isolated area toward player or main areas worldGrid.createEmergencyPassage = function (areaX, areaY, playerX, playerY) { // Calculate direction toward player var dirToPlayerX = playerX - areaX; var dirToPlayerY = playerY - areaY; // Normalize direction var dirX = dirToPlayerX > 0 ? 1 : dirToPlayerX < 0 ? -1 : 0; var dirY = dirToPlayerY > 0 ? 1 : dirToPlayerY < 0 ? -1 : 0; // Create passage toward player or toward center var targetX = dirX !== 0 ? areaX + dirX * 3 : areaX; var targetY = dirY !== 0 ? areaY + dirY * 3 : areaY; // Ensure target is within bounds targetX = Math.max(1, Math.min(this.width - 2, targetX)); targetY = Math.max(1, Math.min(this.height - 2, targetY)); // Create L-shaped passage to target this.createSimplePassage(areaX, areaY, targetX, targetY); }; // Create a simple passage between two points worldGrid.createSimplePassage = function (x1, y1, x2, y2) { // Create horizontal segment first var minX = Math.min(x1, x2); var maxX = Math.max(x1, x2); for (var x = minX; x <= maxX; x++) { if (x >= 0 && x < this.width && y1 >= 0 && y1 < this.height) { this.walls[x][y1] = false; } } // Create vertical segment var minY = Math.min(y1, y2); var maxY = Math.max(y1, y2); for (var y = minY; y <= maxY; y++) { if (x2 >= 0 && x2 < this.width && y >= 0 && y < this.height) { this.walls[x2][y] = false; } } }; // Create geometric wall renderer var wallRenderer = new GeometricWallRenderer(); game.addChild(wallRenderer); // Create ceiling tile renderer var ceilingTileRenderer = new CeilingTileRenderer(); game.addChild(ceilingTileRenderer); ceilingTileRenderer.generateTiles(); // Create light manager var lightManager = new LightManager(); game.addChild(lightManager); // Add lights at random positions for (var i = 0; i < 10; i++) { var randomX = Math.random() * worldGrid.width * worldGrid.cellSize; var randomY = Math.random() * worldGrid.height * worldGrid.cellSize; lightManager.addLight(randomX, randomY); } // Function to find a safe spawn position function findSafeSpawnPosition(startX, startY, searchRadius) { searchRadius = searchRadius || 5; // Force clear a 5x5 area around the intended spawn position first var startGridX = Math.floor(startX / worldGrid.cellSize); var startGridY = Math.floor(startY / worldGrid.cellSize); for (var dx = -2; dx <= 2; dx++) { for (var dy = -2; dy <= 2; dy++) { var clearX = startGridX + dx; var clearY = startGridY + dy; if (clearX >= 0 && clearX < worldGrid.width && clearY >= 0 && clearY < worldGrid.height) { worldGrid.walls[clearX][clearY] = false; } } } // Now check if starting position is safe with enhanced collision detection var playerRadius = 25; // Slightly larger radius for safety if (!worldGrid.checkCollision(startX, startY, playerRadius)) { return { x: startX, y: startY }; } // Search in expanding circles for a safe position with larger steps for (var radius = 1; radius <= searchRadius; radius++) { for (var angle = 0; angle < Math.PI * 2; angle += Math.PI / 4) { // Fewer angles for efficiency var testX = startX + Math.cos(angle) * radius * worldGrid.cellSize; var testY = startY + Math.sin(angle) * radius * worldGrid.cellSize; // Enhanced bounds checking with larger margin if (testX >= worldGrid.cellSize * 2 && testX < (worldGrid.width - 2) * worldGrid.cellSize && testY >= worldGrid.cellSize * 2 && testY < (worldGrid.height - 2) * worldGrid.cellSize) { // Clear area around test position before checking var testGridX = Math.floor(testX / worldGrid.cellSize); var testGridY = Math.floor(testY / worldGrid.cellSize); for (var dx = -1; dx <= 1; dx++) { for (var dy = -1; dy <= 1; dy++) { var clearX = testGridX + dx; var clearY = testGridY + dy; if (clearX >= 0 && clearX < worldGrid.width && clearY >= 0 && clearY < worldGrid.height) { worldGrid.walls[clearX][clearY] = false; } } } // Check with enhanced collision detection if (!worldGrid.checkCollision(testX, testY, playerRadius)) { return { x: testX, y: testY }; } } } } // If no safe position found in search radius, force create one at center var fallbackX = Math.floor(worldGrid.width / 2) * worldGrid.cellSize; var fallbackY = Math.floor(worldGrid.height / 2) * worldGrid.cellSize; // Clear a larger 5x5 area around fallback position for guaranteed safety var fallbackGridX = Math.floor(fallbackX / worldGrid.cellSize); var fallbackGridY = Math.floor(fallbackY / worldGrid.cellSize); for (var dx = -2; dx <= 2; dx++) { for (var dy = -2; dy <= 2; dy++) { var clearX = fallbackGridX + dx; var clearY = fallbackGridY + dy; if (clearX >= 0 && clearX < worldGrid.width && clearY >= 0 && clearY < worldGrid.height) { worldGrid.walls[clearX][clearY] = false; } } } return { x: fallbackX, y: fallbackY }; } // Create player var player = new Player(); // Function to find edge rooms for spawning function findEdgeRooms() { var edgeRooms = []; var checkedPositions = []; // Check positions along all 4 edges of the map var edgePositions = []; // Top edge for (var x = 2; x < worldGrid.width - 2; x += 3) { edgePositions.push({ x: x, y: 2 }); } // Bottom edge for (var x = 2; x < worldGrid.width - 2; x += 3) { edgePositions.push({ x: x, y: worldGrid.height - 3 }); } // Left edge for (var y = 2; y < worldGrid.height - 2; y += 3) { edgePositions.push({ x: 2, y: y }); } // Right edge for (var y = 2; y < worldGrid.height - 2; y += 3) { edgePositions.push({ x: worldGrid.width - 3, y: y }); } // Check each edge position for room centers for (var i = 0; i < edgePositions.length; i++) { var pos = edgePositions[i]; var posKey = pos.x + ',' + pos.y; // Skip if already checked var alreadyChecked = false; for (var j = 0; j < checkedPositions.length; j++) { if (checkedPositions[j] === posKey) { alreadyChecked = true; break; } } if (alreadyChecked) continue; // Check if this position is in an open room if (!worldGrid.walls[pos.x][pos.y]) { // Find the room this position belongs to var room = findRoomAtPosition(pos.x, pos.y); if (room && room.area >= 9) { // Only consider rooms with at least 9 cells // Calculate room center var centerX = Math.floor((room.bounds.minX + room.bounds.maxX) / 2); var centerY = Math.floor((room.bounds.minY + room.bounds.maxY) / 2); // Ensure center is actually open if (!worldGrid.walls[centerX][centerY]) { edgeRooms.push({ centerX: centerX * worldGrid.cellSize + worldGrid.cellSize / 2, centerY: centerY * worldGrid.cellSize + worldGrid.cellSize / 2, area: room.area, bounds: room.bounds }); // Mark all cells of this room as checked for (var k = 0; k < room.cells.length; k++) { var cellKey = room.cells[k].x + ',' + room.cells[k].y; checkedPositions.push(cellKey); } } } } } return edgeRooms; } // Function to find room at specific grid position function findRoomAtPosition(gridX, gridY) { if (gridX < 0 || gridX >= worldGrid.width || gridY < 0 || gridY >= worldGrid.height) { return null; } if (worldGrid.walls[gridX][gridY]) { return null; // Position is a wall } var visited = []; for (var x = 0; x < worldGrid.width; x++) { visited[x] = []; for (var y = 0; y < worldGrid.height; y++) { visited[x][y] = false; } } var roomCells = []; var stack = [{ x: gridX, y: gridY }]; var bounds = { minX: gridX, maxX: gridX, minY: gridY, maxY: gridY }; // Flood fill to find all connected open cells while (stack.length > 0 && roomCells.length < 100) { // Limit for performance var current = stack.pop(); var x = current.x; var y = current.y; if (x < 0 || x >= worldGrid.width || y < 0 || y >= worldGrid.height) { continue; } if (visited[x][y] || worldGrid.walls[x][y]) { continue; } visited[x][y] = true; roomCells.push({ x: x, y: y }); // Update bounds bounds.minX = Math.min(bounds.minX, x); bounds.maxX = Math.max(bounds.maxX, x); bounds.minY = Math.min(bounds.minY, y); bounds.maxY = Math.max(bounds.maxY, y); // Add adjacent cells var directions = [{ dx: 1, dy: 0 }, { dx: -1, dy: 0 }, { dx: 0, dy: 1 }, { dx: 0, dy: -1 }]; for (var d = 0; d < directions.length; d++) { stack.push({ x: x + directions[d].dx, y: y + directions[d].dy }); } } return { area: roomCells.length, bounds: bounds, cells: roomCells }; } // Find edge rooms suitable for spawning var edgeRooms = findEdgeRooms(); var spawnPosition; if (edgeRooms.length > 0) { // Randomly select one of the edge rooms var selectedRoom = edgeRooms[Math.floor(Math.random() * edgeRooms.length)]; spawnPosition = { x: selectedRoom.centerX, y: selectedRoom.centerY }; } else { // Fallback to corner spawn if no suitable edge rooms found var corners = [{ x: worldGrid.cellSize * 2, y: worldGrid.cellSize * 2 }, { x: (worldGrid.width - 2) * worldGrid.cellSize, y: worldGrid.cellSize * 2 }, { x: worldGrid.cellSize * 2, y: (worldGrid.height - 2) * worldGrid.cellSize }, { x: (worldGrid.width - 2) * worldGrid.cellSize, y: (worldGrid.height - 2) * worldGrid.cellSize }]; var selectedCorner = corners[Math.floor(Math.random() * corners.length)]; spawnPosition = selectedCorner; } // Find safe spawn position at the selected location var safeSpawn = findSafeSpawnPosition(spawnPosition.x, spawnPosition.y, 10); // Position player at safe spawn location with proper elevation player.x = safeSpawn.x; player.y = safeSpawn.y - 80; // Elevate player above floor level player.targetX = safeSpawn.x; player.targetY = safeSpawn.y - 80; // Elevate target position as well game.addChild(player); // Create raycasting renderer var raycastRenderer = new RaycastRenderer(); game.addChild(raycastRenderer); // FPS counter variables var fpsCounter = 0; var fpsDisplay = 0; var lastFpsTime = Date.now(); // Create coordinate display text var coordXText = new Text2('X: 0', { size: 60, fill: 0xFFFFFF }); coordXText.anchor.set(0, 0); coordXText.x = 120; // Avoid top-left 100x100 area coordXText.y = 120; LK.gui.addChild(coordXText); var coordZText = new Text2('Z: 0', { size: 60, fill: 0xFFFFFF }); coordZText.anchor.set(0, 0); coordZText.x = 120; // Avoid top-left 100x100 area coordZText.y = 200; LK.gui.addChild(coordZText); // Create FPS display text var fpsText = new Text2('FPS: 60', { size: 60, fill: 0x00FF00 }); fpsText.anchor.set(0, 0); fpsText.x = 120; // Avoid top-left 100x100 area fpsText.y = 280; LK.gui.addChild(fpsText); // Create error checker instance var errorChecker = new ErrorChecker(); game.addChild(errorChecker); // Create error status display var errorStatusText = new Text2('System OK', { size: 50, fill: 0x00FF00 }); errorStatusText.anchor.set(0, 0); errorStatusText.x = 120; // Avoid top-left 100x100 area errorStatusText.y = 520; LK.gui.addChild(errorStatusText); // Create detailed error display (hidden by default) var errorDetailsText = new Text2('', { size: 40, fill: 0xFFFFFF }); errorDetailsText.anchor.set(0, 0); errorDetailsText.x = 120; errorDetailsText.y = 600; errorDetailsText.visible = false; LK.gui.addChild(errorDetailsText); // Create movement status display var movementText = new Text2('Standing Still', { size: 60, fill: 0xFFFFFF }); movementText.anchor.set(0, 0); movementText.x = 120; // Avoid top-left 100x100 area movementText.y = 360; LK.gui.addChild(movementText); // Create movement distance display var distanceText = new Text2('Distance: 0.0', { size: 50, fill: 0xFFFFFF }); distanceText.anchor.set(0, 0); distanceText.x = 120; // Avoid top-left 100x100 area distanceText.y = 440; LK.gui.addChild(distanceText); // Create room size display var roomSizeText = new Text2('Room: Unknown', { size: 50, fill: 0xFFFFFF }); roomSizeText.anchor.set(0, 0); roomSizeText.x = 120; // Avoid top-left 100x100 area roomSizeText.y = 480; LK.gui.addChild(roomSizeText); // Create settings button in top-right corner (larger for mobile) var settingsButton = LK.getAsset('untexturedArea', { anchorX: 1, anchorY: 0, width: 120, height: 120 }); settingsButton.tint = 0x444444; settingsButton.alpha = 0.7; LK.gui.topRight.addChild(settingsButton); var settingsText = new Text2('⚙', { size: 60, fill: 0xFFFFFF }); settingsText.anchor.set(0.5, 0.5); settingsText.x = -60; settingsText.y = 60; LK.gui.topRight.addChild(settingsText); // Create sensitivity configuration panel var sensitivityConfig = new SensitivityConfig(); sensitivityConfig.x = 2732 - 320; sensitivityConfig.y = 100; LK.gui.addChild(sensitivityConfig); // Create movement crosshair for better mobile controls var movementCrosshair = new MovementCrosshair(); movementCrosshair.x = 200; // Position on left side movementCrosshair.y = 2048 - 200; // Bottom left area LK.gui.addChild(movementCrosshair); // Create minimap and position it more to the left var minimap = new Minimap(); minimap.x = 800; // Move to left side (was 1366 center) minimap.y = 1024; // Center vertically (2048/2) LK.gui.addChild(minimap); // Create door instance and position it in world var door = new Door(); // Find a good position for the door - place it in an open area near spawn var doorX = (worldGrid.width / 2 + 3) * worldGrid.cellSize; var doorY = (worldGrid.height / 2 + 2) * worldGrid.cellSize; door.x = doorX; door.y = doorY; // Keep door at exact world level for proper collision and rendering game.addChild(door); // Ensure a room is always generated around the door position var doorGridX = Math.floor(doorX / worldGrid.cellSize); var doorGridY = Math.floor(doorY / worldGrid.cellSize); // Add door tracking to world grid worldGrid.doorPosition = { x: doorX, y: doorY, gridX: doorGridX, gridY: doorGridY }; // Add door detection method to world grid worldGrid.hasDoorAt = function (worldX, worldY) { if (!this.doorPosition) return false; var dx = Math.abs(worldX - this.doorPosition.x); var dy = Math.abs(worldY - this.doorPosition.y); return dx < 50 && dy < 50; // Door collision area }; // Create a guaranteed 5x5 room around the door for better connectivity for (var dx = -2; dx <= 2; dx++) { for (var dy = -2; dy <= 2; dy++) { var roomX = doorGridX + dx; var roomY = doorGridY + dy; if (roomX >= 0 && roomX < worldGrid.width && roomY >= 0 && roomY < worldGrid.height) { worldGrid.walls[roomX][roomY] = false; } } } // Create an adjacent connected room to the door room var connectedRoomX = doorGridX + 4; // Place connected room 4 cells to the right var connectedRoomY = doorGridY; // Create a guaranteed 4x4 connected room for (var dx = 0; dx < 4; dx++) { for (var dy = -1; dy <= 2; dy++) { var roomX = connectedRoomX + dx; var roomY = connectedRoomY + dy; if (roomX >= 0 && roomX < worldGrid.width && roomY >= 0 && roomY < worldGrid.height) { worldGrid.walls[roomX][roomY] = false; } } } // Create a wide corridor connecting the door room to the adjacent room for (var x = doorGridX + 2; x < connectedRoomX; x++) { for (var y = doorGridY - 1; y <= doorGridY + 1; y++) { if (x >= 0 && x < worldGrid.width && y >= 0 && y < worldGrid.height) { worldGrid.walls[x][y] = false; } } } // Create corridors leading to the door room from spawn area to ensure connectivity var spawnGridX = Math.floor(worldGrid.width / 2); var spawnGridY = Math.floor(worldGrid.height / 2); // Create horizontal corridor var minX = Math.min(spawnGridX, doorGridX); var maxX = Math.max(spawnGridX, doorGridX); for (var x = minX; x <= maxX; x++) { if (x >= 0 && x < worldGrid.width && spawnGridY >= 0 && spawnGridY < worldGrid.height) { worldGrid.walls[x][spawnGridY] = false; } } // Create vertical corridor var minY = Math.min(spawnGridY, doorGridY); var maxY = Math.max(spawnGridY, doorGridY); for (var y = minY; y <= maxY; y++) { if (doorGridX >= 0 && doorGridX < worldGrid.width && y >= 0 && y < worldGrid.height) { worldGrid.walls[doorGridX][y] = false; } } // Also connect the adjacent room to the main corridor network // Create additional corridor from connected room toward spawn area for (var x = connectedRoomX; x < Math.min(connectedRoomX + 6, worldGrid.width - 1); x++) { if (x >= 0 && x < worldGrid.width && spawnGridY >= 0 && spawnGridY < worldGrid.height) { worldGrid.walls[x][spawnGridY] = false; } } // Create look up button (right side of screen) var lookUpButton = LK.getAsset('untexturedArea', { anchorX: 0.5, anchorY: 0.5, width: 150, height: 100 }); lookUpButton.tint = 0x444444; lookUpButton.alpha = 0.7; lookUpButton.x = 2732 - 200; // Right side lookUpButton.y = 2048 - 400; // Above look down button LK.gui.addChild(lookUpButton); var lookUpText = new Text2('▲', { size: 50, fill: 0xFFFFFF }); lookUpText.anchor.set(0.5, 0.5); lookUpText.x = 2732 - 200; lookUpText.y = 2048 - 400; LK.gui.addChild(lookUpText); // Create look down button (right side of screen) var lookDownButton = LK.getAsset('untexturedArea', { anchorX: 0.5, anchorY: 0.5, width: 150, height: 100 }); lookDownButton.tint = 0x444444; lookDownButton.alpha = 0.7; lookDownButton.x = 2732 - 200; // Right side lookDownButton.y = 2048 - 200; // Bottom right area LK.gui.addChild(lookDownButton); var lookDownText = new Text2('▼', { size: 50, fill: 0xFFFFFF }); lookDownText.anchor.set(0.5, 0.5); lookDownText.x = 2732 - 200; lookDownText.y = 2048 - 200; LK.gui.addChild(lookDownText); // Look up button handlers lookUpButton.down = function (x, y, obj) { lookUpButton.alpha = 1.0; // Visual feedback lookUp = true; }; lookUpButton.up = function (x, y, obj) { lookUpButton.alpha = 0.7; // Reset visual lookUp = false; }; // Look down button handlers lookDownButton.down = function (x, y, obj) { lookDownButton.alpha = 1.0; // Visual feedback lookDown = true; }; lookDownButton.up = function (x, y, obj) { lookDownButton.alpha = 0.7; // Reset visual lookDown = false; }; // Movement flags var moveForward = false; var moveBackward = false; var turnLeft = false; var turnRight = false; var lookUp = false; var lookDown = false; // Player movement recognition system var playerMovementRecognition = { lastX: 0, lastY: 0, lastAngle: 0, isMoving: false, wasMoving: false, movementStartTime: 0, movementDistance: 0, movementDirection: { x: 0, y: 0 }, rotationAmount: 0 }; // Touch controls for movement var touchStartX = 0; var touchStartY = 0; var touchActive = false; // Settings button click handler settingsButton.down = function (x, y, obj) { sensitivityConfig.toggle(); }; // Error status click handler for detailed view errorStatusText.down = function (x, y, obj) { if (errorChecker.errorLog.length > 0) { // Toggle error details visibility errorDetailsText.visible = !errorDetailsText.visible; // Show last few errors var lastErrors = []; for (var i = Math.max(0, errorChecker.errorLog.length - 5); i < errorChecker.errorLog.length; i++) { var error = errorChecker.errorLog[i]; var timeAgo = Math.floor((Date.now() - error.timestamp) / 1000); lastErrors.push('[' + timeAgo + 's] ' + error.type + ': ' + error.message.substring(0, 50)); } errorDetailsText.setText(lastErrors.join('\n')); } else { // Run immediate inspection when no errors showing var inspectionSummary = errorChecker.getInspectionSummary(); if (inspectionSummary.totalIssues > 0) { errorDetailsText.visible = true; var summaryText = 'INSPECTION RESULTS:\n'; summaryText += 'Critical: ' + inspectionSummary.criticalIssues + '\n'; summaryText += 'Warnings: ' + inspectionSummary.warningIssues + '\n'; summaryText += 'Info: ' + inspectionSummary.infoIssues + '\n\n'; summaryText += 'TOP ISSUES:\n'; for (var i = 0; i < inspectionSummary.topIssues.length; i++) { summaryText += '• ' + inspectionSummary.topIssues[i].substring(0, 40) + '\n'; } errorDetailsText.setText(summaryText); } else { // Clear log if no errors errorChecker.clearLog(); errorDetailsText.visible = false; } } }; game.down = function (x, y, obj) { touchStartX = x; touchStartY = y; touchActive = true; // Forward movement on touch moveForward = true; }; game.up = function (x, y, obj) { touchActive = false; moveForward = false; moveBackward = false; turnLeft = false; turnRight = false; lookUp = false; lookDown = false; // Reset crosshair if not actively being used if (!movementCrosshair.activeButton) { movementCrosshair.resetMovement(); } }; game.move = function (x, y, obj) { if (!touchActive) { return; } var deltaX = x - touchStartX; var deltaY = y - touchStartY; // Horizontal movement for turning if (Math.abs(deltaX) > 50) { if (deltaX > 0) { turnRight = true; turnLeft = false; } else { turnLeft = true; turnRight = false; } } else { turnLeft = false; turnRight = false; } // Vertical movement - split between forward/backward and look up/down if (Math.abs(deltaY) > 50) { // If touch is in upper part of screen, use for looking up/down if (y < 1024) { // Upper half of screen for vertical look if (deltaY < 0) { lookUp = true; lookDown = false; } else { lookDown = true; lookUp = false; } moveForward = false; moveBackward = false; } else { // Lower half of screen for movement if (deltaY < 0) { moveForward = true; moveBackward = false; } else { moveBackward = true; moveForward = false; } lookUp = false; lookDown = false; } } else { lookUp = false; lookDown = false; } }; game.update = function () { // Initialize movement recognition on first frame if (playerMovementRecognition.lastX === 0 && playerMovementRecognition.lastY === 0) { playerMovementRecognition.lastX = player.x; playerMovementRecognition.lastY = player.y; playerMovementRecognition.lastAngle = player.angle; } // Update player rotation speed based on sensitivity (0-100 maps to 0.02-0.08) - reduced for lower sensitivity var sensitivityValue = sensitivityConfig.sensitivity; player.rotSpeed = 0.02 + sensitivityValue / 100 * 0.06; // Get movement state from crosshair var crosshairState = movementCrosshair.getMovementState(); // Handle movement (combine touch controls and crosshair) if (moveForward || crosshairState.forward) { player.moveForward(); } if (moveBackward || crosshairState.backward) { player.moveBackward(); } if (turnLeft || crosshairState.left) { player.turnLeft(); } if (turnRight || crosshairState.right) { player.turnRight(); } if (lookUp) { player.lookUp(); } if (lookDown) { player.lookDown(); } // Apply smooth interpolation player.updateSmooth(); // Movement Recognition System var currentTime = Date.now(); // Calculate movement deltas var deltaX = player.x - playerMovementRecognition.lastX; var deltaY = player.y - playerMovementRecognition.lastY; var deltaAngle = player.angle - playerMovementRecognition.lastAngle; // Handle angle wrapping for rotation detection if (deltaAngle > Math.PI) { deltaAngle -= 2 * Math.PI; } if (deltaAngle < -Math.PI) { deltaAngle += 2 * Math.PI; } // Calculate movement distance and rotation var movementDistance = Math.sqrt(deltaX * deltaX + deltaY * deltaY); var rotationAmount = Math.abs(deltaAngle); // Update movement direction if (movementDistance > 0.1) { playerMovementRecognition.movementDirection.x = deltaX / movementDistance; playerMovementRecognition.movementDirection.y = deltaY / movementDistance; } // Determine if player is currently moving (position or rotation) var movementThreshold = 0.5; // Minimum movement to be considered "moving" var rotationThreshold = 0.01; // Minimum rotation to be considered "turning" var isCurrentlyMoving = movementDistance > movementThreshold || rotationAmount > rotationThreshold; // Update movement state playerMovementRecognition.wasMoving = playerMovementRecognition.isMoving; playerMovementRecognition.isMoving = isCurrentlyMoving; // Track movement start time if (!playerMovementRecognition.wasMoving && playerMovementRecognition.isMoving) { // Movement just started playerMovementRecognition.movementStartTime = currentTime; playerMovementRecognition.movementDistance = 0; // Start looping footstep sound LK.playMusic('4'); } // Stop footstep sound when movement stops if (playerMovementRecognition.wasMoving && !playerMovementRecognition.isMoving) { // Movement just stopped - stop footstep loop LK.stopMusic(); } // Accumulate total movement distance if (playerMovementRecognition.isMoving) { playerMovementRecognition.movementDistance += movementDistance; } // Update movement display var movementStatus = "Standing Still"; var movementColor = 0xFFFFFF; if (playerMovementRecognition.isMoving) { if (movementDistance > rotationAmount * 10) { // More movement than rotation if (deltaX > 0.1) { movementStatus = "Moving East"; } else if (deltaX < -0.1) { movementStatus = "Moving West"; } else if (deltaY > 0.1) { movementStatus = "Moving South"; } else if (deltaY < -0.1) { movementStatus = "Moving North"; } else { movementStatus = "Moving"; } movementColor = 0x00FF00; // Green for movement } else { // More rotation than movement if (deltaAngle > 0.01) { movementStatus = "Turning Right"; } else if (deltaAngle < -0.01) { movementStatus = "Turning Left"; } else { movementStatus = "Turning"; } movementColor = 0x00FFFF; // Cyan for rotation } } else if (playerMovementRecognition.wasMoving) { // Just stopped moving movementStatus = "Stopped"; movementColor = 0xFFFF00; // Yellow for just stopped } // Update display texts movementText.setText(movementStatus); movementText.fill = movementColor; // Update distance display (rounded to 1 decimal place) var totalDistance = Math.round(playerMovementRecognition.movementDistance * 10) / 10; distanceText.setText('Distance: ' + totalDistance); // Store current position and angle for next frame playerMovementRecognition.lastX = player.x; playerMovementRecognition.lastY = player.y; playerMovementRecognition.lastAngle = player.angle; playerMovementRecognition.rotationAmount = rotationAmount; // Generate new chunks as player moves if (LK.ticks % 30 === 0) { // Check every 30 frames for performance procGen.generateAroundPlayer(player.x, player.y); // Check for isolated areas near player and create passages proactively worldGrid.checkPlayerProximityForPassages(player.x, player.y); } // Validate door connectivity every 180 frames (3 seconds) if (LK.ticks % 180 === 0 && pathfindingSystem && worldGrid.doorPosition) { var playerGridX = Math.floor(player.x / worldGrid.cellSize); var playerGridY = Math.floor(player.y / worldGrid.cellSize); var doorGridX = worldGrid.doorPosition.gridX; var doorGridY = worldGrid.doorPosition.gridY; // Check if path exists from player to door var pathToDoor = pathfindingSystem.findPath(player.x, player.y, worldGrid.doorPosition.x, worldGrid.doorPosition.y); // If no path exists, create one if (pathToDoor.length === 0) { pathfindingSystem.createGuaranteedPath(player.x, player.y, worldGrid.doorPosition.x, worldGrid.doorPosition.y); } } // Render the raycasted view raycastRenderer.render(player); // Render walls wallRenderer.render(player); // Render ceiling tiles ceilingTileRenderer.render(player); // Update FPS counter fpsCounter++; var currentTime = Date.now(); if (currentTime - lastFpsTime >= 1000) { // Update every second fpsDisplay = fpsCounter; fpsCounter = 0; lastFpsTime = currentTime; // Color code FPS display based on performance var fpsColor = 0x00FF00; // Green for good FPS (60+) if (fpsDisplay < 30) { fpsColor = 0xFF0000; // Red for poor FPS } else if (fpsDisplay < 50) { fpsColor = 0xFFFF00; // Yellow for moderate FPS } fpsText.fill = fpsColor; fpsText.setText('FPS: ' + fpsDisplay); } // Keep sound 1 playing continuously (check every 60 frames) if (LK.ticks % 60 === 0) { // Restart sound 1 if it's not playing to maintain continuous loop LK.getSound('1').play(); } // Update coordinate display var gridX = Math.floor(player.x / worldGrid.cellSize); var gridZ = Math.floor(player.y / worldGrid.cellSize); coordXText.setText('X: ' + gridX); coordZText.setText('Z: ' + gridZ); // Update room size display (check every 15 frames for performance) if (LK.ticks % 15 === 0) { var currentRoom = worldGrid.detectCurrentRoom(player.x, player.y); var roomDisplayText = 'Habitación: ' + currentRoom.type; if (currentRoom.area > 0) { roomDisplayText += ' (' + currentRoom.area + ' celdas)'; } roomSizeText.setText(roomDisplayText); roomSizeText.fill = currentRoom.color || 0xFFFFFF; } // Update minimap minimap.update(player); // Update error checker status var errorSummary = errorChecker.getErrorSummary(); var statusText = 'System OK'; var statusColor = 0x00FF00; if (errorSummary.errors > 0) { statusText = 'ERRORS: ' + errorSummary.errors; statusColor = 0xFF0000; } else if (errorSummary.warnings > 0) { statusText = 'WARNINGS: ' + errorSummary.warnings; statusColor = 0xFFFF00; } else if (errorSummary.recent > 0) { statusText = 'RECENT: ' + errorSummary.recent; statusColor = 0x00FFFF; } else { // Show inspection status when no errors if (LK.ticks % 300 === 0) { // Every 5 seconds var inspectionSummary = errorChecker.getInspectionSummary(); if (inspectionSummary.totalIssues > 0) { statusText = 'INSPECT: ' + inspectionSummary.totalIssues; statusColor = inspectionSummary.criticalIssues > 0 ? 0xFF6600 : 0x6699FF; } } } errorStatusText.setText(statusText); errorStatusText.fill = statusColor; // Show error details on touch (every 120 frames to avoid spam) if (LK.ticks % 120 === 0 && errorSummary.total > 0) { var recentErrors = []; var currentTime = Date.now(); for (var i = errorChecker.errorLog.length - 1; i >= 0 && recentErrors.length < 3; i--) { var error = errorChecker.errorLog[i]; if (currentTime - error.timestamp < 10000) { // Last 10 seconds recentErrors.push(error.type + ': ' + error.message.substring(0, 40)); } } if (recentErrors.length > 0) { errorDetailsText.setText(recentErrors.join('\n')); errorDetailsText.visible = true; } else { errorDetailsText.visible = false; } } else if (errorSummary.total === 0) { errorDetailsText.visible = false; } }; // Play background music (song 2) LK.playMusic('2'); // Play sound 3 as a loop LK.playMusic('3'); // Play sound 1 as looping sound separate from music LK.getSound('1').play(); worldGrid.isFloor = function (gridX, gridY) { // Define logic to determine if a grid position is a floor // For now, assume any position not marked as a wall is a floor return !this.walls[gridX][gridY]; }; // Room detection system worldGrid.detectCurrentRoom = function (playerX, playerY) { var playerGridX = Math.floor(playerX / this.cellSize); var playerGridY = Math.floor(playerY / this.cellSize); // Check if player is in a valid position if (playerGridX < 0 || playerGridX >= this.width || playerGridY < 0 || playerGridY >= this.height) { return { type: 'Outside', area: 0 }; } // If player is in a wall, return wall if (this.walls[playerGridX][playerGridY]) { return { type: 'Wall', area: 0 }; } // Flood fill to find connected room area var visited = []; for (var x = 0; x < this.width; x++) { visited[x] = []; for (var y = 0; y < this.height; y++) { visited[x][y] = false; } } var roomCells = []; var stack = [{ x: playerGridX, y: playerGridY }]; var bounds = { minX: playerGridX, maxX: playerGridX, minY: playerGridY, maxY: playerGridY }; // Flood fill to find all connected open cells while (stack.length > 0 && roomCells.length < 200) { // Limit for performance var current = stack.pop(); var x = current.x; var y = current.y; if (x < 0 || x >= this.width || y < 0 || y >= this.height) { continue; } if (visited[x][y] || this.walls[x][y]) { continue; } visited[x][y] = true; roomCells.push({ x: x, y: y }); // Update bounds bounds.minX = Math.min(bounds.minX, x); bounds.maxX = Math.max(bounds.maxX, x); bounds.minY = Math.min(bounds.minY, y); bounds.maxY = Math.max(bounds.maxY, y); // Add adjacent cells var directions = [{ dx: 1, dy: 0 }, { dx: -1, dy: 0 }, { dx: 0, dy: 1 }, { dx: 0, dy: -1 }]; for (var d = 0; d < directions.length; d++) { stack.push({ x: x + directions[d].dx, y: y + directions[d].dy }); } } var roomArea = roomCells.length; var roomType = 'Unknown'; var roomColor = 0xFFFFFF; // Classify room size based on area if (roomArea <= 4) { roomType = 'Pequeña'; roomColor = 0xFF6666; // Light red for small } else if (roomArea <= 16) { roomType = 'Mediana'; roomColor = 0xFFFF66; // Yellow for medium } else if (roomArea <= 50) { roomType = 'Grande'; roomColor = 0x66FF66; // Light green for large } else { roomType = 'Muy Grande'; roomColor = 0x66FFFF; // Cyan for very large } return { type: roomType, area: roomArea, color: roomColor, bounds: bounds, cells: roomCells }; };
===================================================================
--- original.js
+++ change.js
@@ -1189,8 +1189,222 @@
rightButton.alpha = 0.7;
};
return self;
});
+var PathfindingSystem = Container.expand(function () {
+ var self = Container.call(this);
+ // A* pathfinding implementation
+ self.findPath = function (startX, startY, endX, endY) {
+ var startGridX = Math.floor(startX / worldGrid.cellSize);
+ var startGridY = Math.floor(startY / worldGrid.cellSize);
+ var endGridX = Math.floor(endX / worldGrid.cellSize);
+ var endGridY = Math.floor(endY / worldGrid.cellSize);
+ var openList = [];
+ var closedList = [];
+ var cameFrom = [];
+ // Initialize arrays
+ for (var x = 0; x < worldGrid.width; x++) {
+ cameFrom[x] = [];
+ for (var y = 0; y < worldGrid.height; y++) {
+ cameFrom[x][y] = null;
+ }
+ }
+ var startNode = {
+ x: startGridX,
+ y: startGridY,
+ g: 0,
+ h: self.heuristic(startGridX, startGridY, endGridX, endGridY),
+ f: 0
+ };
+ startNode.f = startNode.g + startNode.h;
+ openList.push(startNode);
+ while (openList.length > 0) {
+ // Find node with lowest f score
+ var currentNode = openList[0];
+ var currentIndex = 0;
+ for (var i = 1; i < openList.length; i++) {
+ if (openList[i].f < currentNode.f) {
+ currentNode = openList[i];
+ currentIndex = i;
+ }
+ }
+ // Remove current from open list
+ openList.splice(currentIndex, 1);
+ closedList.push(currentNode);
+ // Check if we reached the goal
+ if (currentNode.x === endGridX && currentNode.y === endGridY) {
+ return self.reconstructPath(cameFrom, currentNode);
+ }
+ // Check neighbors
+ var neighbors = [{
+ dx: 1,
+ dy: 0
+ }, {
+ dx: -1,
+ dy: 0
+ }, {
+ dx: 0,
+ dy: 1
+ }, {
+ dx: 0,
+ dy: -1
+ }];
+ for (var i = 0; i < neighbors.length; i++) {
+ var neighborX = currentNode.x + neighbors[i].dx;
+ var neighborY = currentNode.y + neighbors[i].dy;
+ // Check bounds
+ if (neighborX < 0 || neighborX >= worldGrid.width || neighborY < 0 || neighborY >= worldGrid.height) {
+ continue;
+ }
+ // Check if neighbor is in closed list
+ var inClosedList = false;
+ for (var j = 0; j < closedList.length; j++) {
+ if (closedList[j].x === neighborX && closedList[j].y === neighborY) {
+ inClosedList = true;
+ break;
+ }
+ }
+ if (inClosedList) continue;
+ // Skip walls unless it's the end position
+ if (worldGrid.walls[neighborX][neighborY] && !(neighborX === endGridX && neighborY === endGridY)) {
+ continue;
+ }
+ var tentativeG = currentNode.g + 1;
+ // Check if neighbor is in open list
+ var existingNode = null;
+ for (var j = 0; j < openList.length; j++) {
+ if (openList[j].x === neighborX && openList[j].y === neighborY) {
+ existingNode = openList[j];
+ break;
+ }
+ }
+ if (existingNode && tentativeG >= existingNode.g) {
+ continue;
+ }
+ cameFrom[neighborX][neighborY] = currentNode;
+ var neighborNode = {
+ x: neighborX,
+ y: neighborY,
+ g: tentativeG,
+ h: self.heuristic(neighborX, neighborY, endGridX, endGridY),
+ f: 0
+ };
+ neighborNode.f = neighborNode.g + neighborNode.h;
+ if (existingNode) {
+ existingNode.g = tentativeG;
+ existingNode.f = neighborNode.f;
+ } else {
+ openList.push(neighborNode);
+ }
+ }
+ }
+ return []; // No path found
+ };
+ // Manhattan distance heuristic
+ self.heuristic = function (x1, y1, x2, y2) {
+ return Math.abs(x1 - x2) + Math.abs(y1 - y2);
+ };
+ // Reconstruct path from A* result
+ self.reconstructPath = function (cameFrom, currentNode) {
+ var path = [];
+ var current = currentNode;
+ while (current) {
+ path.unshift({
+ x: current.x,
+ y: current.y
+ });
+ current = cameFrom[current.x][current.y];
+ }
+ return path;
+ };
+ // Create guaranteed path by carving through walls
+ self.createGuaranteedPath = function (startX, startY, endX, endY) {
+ var path = self.findPath(startX, startY, endX, endY);
+ if (path.length === 0) {
+ // No path exists, create one by carving through walls
+ path = self.createDirectPath(startX, startY, endX, endY);
+ }
+ // Ensure path is wide enough for player movement
+ self.widenPath(path);
+ return path;
+ };
+ // Create direct path when no route exists
+ self.createDirectPath = function (startX, startY, endX, endY) {
+ var startGridX = Math.floor(startX / worldGrid.cellSize);
+ var startGridY = Math.floor(startY / worldGrid.cellSize);
+ var endGridX = Math.floor(endX / worldGrid.cellSize);
+ var endGridY = Math.floor(endY / worldGrid.cellSize);
+ var path = [];
+ var currentX = startGridX;
+ var currentY = startGridY;
+ // Create L-shaped path (horizontal first, then vertical)
+ while (currentX !== endGridX) {
+ path.push({
+ x: currentX,
+ y: currentY
+ });
+ if (currentX < endGridX) {
+ currentX++;
+ } else {
+ currentX--;
+ }
+ }
+ while (currentY !== endGridY) {
+ path.push({
+ x: currentX,
+ y: currentY
+ });
+ if (currentY < endGridY) {
+ currentY++;
+ } else {
+ currentY--;
+ }
+ }
+ path.push({
+ x: endGridX,
+ y: endGridY
+ });
+ // Carve the path
+ for (var i = 0; i < path.length; i++) {
+ var pathNode = path[i];
+ if (pathNode.x >= 0 && pathNode.x < worldGrid.width && pathNode.y >= 0 && pathNode.y < worldGrid.height) {
+ worldGrid.walls[pathNode.x][pathNode.y] = false;
+ }
+ }
+ return path;
+ };
+ // Widen path for better player movement
+ self.widenPath = function (path) {
+ for (var i = 0; i < path.length; i++) {
+ var pathNode = path[i];
+ // Clear adjacent cells to make path wider
+ var widening = [{
+ dx: 1,
+ dy: 0
+ }, {
+ dx: -1,
+ dy: 0
+ }, {
+ dx: 0,
+ dy: 1
+ }, {
+ dx: 0,
+ dy: -1
+ }];
+ for (var j = 0; j < widening.length; j++) {
+ var wideX = pathNode.x + widening[j].dx;
+ var wideY = pathNode.y + widening[j].dy;
+ if (wideX >= 0 && wideX < worldGrid.width && wideY >= 0 && wideY < worldGrid.height) {
+ // Only widen if it doesn't break room structure
+ if (Math.random() < 0.6) {
+ worldGrid.walls[wideX][wideY] = false;
+ }
+ }
+ }
+ }
+ };
+ return self;
+});
var Player = Container.expand(function () {
var self = Container.call(this);
self.x = 1366;
self.y = 1024;
@@ -1369,8 +1583,10 @@
// Add pillars specifically in medium and large rooms
self.addPillarsToRooms(offsetX, offsetY, rooms);
// Validate and ensure all rooms are connected
self.validateRoomConnectivity(rooms, offsetX, offsetY);
+ // Ensure path to door exists from this chunk
+ self.ensurePathToDoor(offsetX, offsetY, rooms);
};
// Carve out a room (remove walls)
self.carveRoom = function (x, y, width, height) {
for (var roomX = x; roomX < x + width; roomX++) {
@@ -2294,8 +2510,86 @@
}
// Only place pillar if at least 60% of surrounding area is open
return openSpaces >= totalSpaces * 0.6;
};
+ // Ensure there's always a path to the door from generated chunks
+ self.ensurePathToDoor = function (chunkOffsetX, chunkOffsetY, rooms) {
+ if (!worldGrid.doorPosition || !pathfindingSystem) {
+ return;
+ }
+ var doorGridX = worldGrid.doorPosition.gridX;
+ var doorGridY = worldGrid.doorPosition.gridY;
+ // Check if door is in this chunk
+ if (doorGridX >= chunkOffsetX && doorGridX < chunkOffsetX + self.chunkSize && doorGridY >= chunkOffsetY && doorGridY < chunkOffsetY + self.chunkSize) {
+ return; // Door is in this chunk, no need to create path
+ }
+ // Find the room closest to the door
+ var closestRoom = null;
+ var minDistance = Infinity;
+ for (var i = 0; i < rooms.length; i++) {
+ var room = rooms[i];
+ var dx = room.centerX - doorGridX;
+ var dy = room.centerY - doorGridY;
+ var distance = Math.sqrt(dx * dx + dy * dy);
+ if (distance < minDistance) {
+ minDistance = distance;
+ closestRoom = room;
+ }
+ }
+ if (closestRoom) {
+ // Create path from closest room toward door direction
+ var directionToDoorX = doorGridX > closestRoom.centerX ? 1 : doorGridX < closestRoom.centerX ? -1 : 0;
+ var directionToDoorY = doorGridY > closestRoom.centerY ? 1 : doorGridY < closestRoom.centerY ? -1 : 0;
+ // Create corridor leading toward door
+ var corridorLength = Math.min(self.chunkSize - 2, 4);
+ var startX = closestRoom.centerX;
+ var startY = closestRoom.centerY;
+ // Create path toward chunk boundary in door direction
+ for (var step = 0; step < corridorLength; step++) {
+ var pathX = startX + directionToDoorX * step;
+ var pathY = startY + directionToDoorY * step;
+ // Ensure path coordinates are within chunk and world bounds
+ if (pathX >= chunkOffsetX && pathX < chunkOffsetX + self.chunkSize && pathY >= chunkOffsetY && pathY < chunkOffsetY + self.chunkSize && pathX >= 0 && pathX < worldGrid.width && pathY >= 0 && pathY < worldGrid.height) {
+ // Clear path cell and adjacent cells for width
+ worldGrid.walls[pathX][pathY] = false;
+ // Add width to corridor
+ if (directionToDoorX !== 0) {
+ if (pathY + 1 < worldGrid.height && pathY + 1 < chunkOffsetY + self.chunkSize) {
+ worldGrid.walls[pathX][pathY + 1] = false;
+ }
+ if (pathY - 1 >= 0 && pathY - 1 >= chunkOffsetY) {
+ worldGrid.walls[pathX][pathY - 1] = false;
+ }
+ } else {
+ if (pathX + 1 < worldGrid.width && pathX + 1 < chunkOffsetX + self.chunkSize) {
+ worldGrid.walls[pathX + 1][pathY] = false;
+ }
+ if (pathX - 1 >= 0 && pathX - 1 >= chunkOffsetX) {
+ worldGrid.walls[pathX - 1][pathY] = false;
+ }
+ }
+ }
+ }
+ // Create exit at chunk boundary toward door
+ var exitX = startX + directionToDoorX * corridorLength;
+ var exitY = startY + directionToDoorY * corridorLength;
+ // Ensure exit is at chunk boundary
+ if (directionToDoorX > 0) {
+ exitX = Math.min(exitX, chunkOffsetX + self.chunkSize - 1);
+ } else if (directionToDoorX < 0) {
+ exitX = Math.max(exitX, chunkOffsetX);
+ }
+ if (directionToDoorY > 0) {
+ exitY = Math.min(exitY, chunkOffsetY + self.chunkSize - 1);
+ } else if (directionToDoorY < 0) {
+ exitY = Math.max(exitY, chunkOffsetY);
+ }
+ // Clear the exit point
+ if (exitX >= 0 && exitX < worldGrid.width && exitY >= 0 && exitY < worldGrid.height) {
+ worldGrid.walls[exitX][exitY] = false;
+ }
+ }
+ };
return self;
});
var RaycastRenderer = Container.expand(function () {
var self = Container.call(this);
@@ -2902,8 +3196,10 @@
}
}
}
}
+// Create pathfinding system
+var pathfindingSystem = new PathfindingSystem();
// Create procedural generator
var procGen = new ProcGen();
// Generate initial chunks around spawn point
procGen.generateAroundPlayer(worldGrid.width * worldGrid.cellSize / 2, worldGrid.height * worldGrid.cellSize / 2);
@@ -4261,8 +4557,21 @@
procGen.generateAroundPlayer(player.x, player.y);
// Check for isolated areas near player and create passages proactively
worldGrid.checkPlayerProximityForPassages(player.x, player.y);
}
+ // Validate door connectivity every 180 frames (3 seconds)
+ if (LK.ticks % 180 === 0 && pathfindingSystem && worldGrid.doorPosition) {
+ var playerGridX = Math.floor(player.x / worldGrid.cellSize);
+ var playerGridY = Math.floor(player.y / worldGrid.cellSize);
+ var doorGridX = worldGrid.doorPosition.gridX;
+ var doorGridY = worldGrid.doorPosition.gridY;
+ // Check if path exists from player to door
+ var pathToDoor = pathfindingSystem.findPath(player.x, player.y, worldGrid.doorPosition.x, worldGrid.doorPosition.y);
+ // If no path exists, create one
+ if (pathToDoor.length === 0) {
+ pathfindingSystem.createGuaranteedPath(player.x, player.y, worldGrid.doorPosition.x, worldGrid.doorPosition.y);
+ }
+ }
// Render the raycasted view
raycastRenderer.render(player);
// Render walls
wallRenderer.render(player);