User prompt
Update as needed: let newBud = new Bud(); let worldPos = self.garden.gridToWorld(targetCol, targetRow); newBud.x = worldPos.x - 400; newBud.y = worldPos.y - 400;
User prompt
Update as needed: let worldPos = self.garden.gridToWorld(targetCol, targetRow); let warning = self.createWarning(worldPos.x - 400, worldPos.y - 400);
User prompt
Update as needed: In BudSpawner's update method, modify both coordinate calculations to include the full offset: 1. For warnings: ```javascript let worldPos = self.garden.gridToWorld(targetCol, targetRow); let warning = self.createWarning(worldPos.x - 400, worldPos.y - 400 + (2732 * 0.12)); ``` 2. For buds: ```javascript let newBud = new Bud(); let worldPos = self.garden.gridToWorld(targetCol, targetRow); newBud.x = worldPos.x - 400; newBud.y = worldPos.y - 400 + (2732 * 0.12);
User prompt
Update as necessary: let newBud = new Bud(); let worldPos = self.garden.gridToWorld(targetCol, targetRow); newBud.x = worldPos.x; newBud.y = worldPos.y; ``` And replace it with: ```javascript let newBud = new Bud(); let worldPos = self.garden.gridToWorld(targetCol, targetRow); newBud.x = worldPos.x; newBud.y = worldPos.y - 400; // Adjust Y position to match game coordinate system
User prompt
Update as needed: // In BudSpawner update method, change this part: if(spawnInfo && spawnInfo.x !== undefined && spawnInfo.y !== undefined) { ``` to: ```javascript if(spawnInfo && spawnInfo.row !== undefined && spawnInfo.col !== undefined) { ``` And then adjust the following line: ```javascript self.nextSpawnPosition = { row: parseInt(spawnInfo.row), col: parseInt(spawnInfo.col) };
User prompt
Update as necessary: // In BudSpawner class self.selectSpawnPosition = function() { // Count empty spaces let emptySpaces = 0; let emptyPositions = []; for(let row = 0; row < self.garden.rows; row++) { for(let col = 0; col < self.garden.cols; col++) { if(self.garden.grid[row][col] === null) { emptySpaces++; emptyPositions.push({row, col}); } } } // No empty spaces if(emptySpaces === 0) return null; // Select pattern size based on empty spaces let patternPool; if(emptySpaces >= 3 && Math.random() < 0.3) { patternPool = self.patterns.triples; } else if(emptySpaces >= 2 && Math.random() < 0.5) { patternPool = self.patterns.pairs; } else { patternPool = self.patterns.single; } // Find valid positions for selected pattern pool let validPositions = []; for(let {row, col} of emptyPositions) { patternCheck: for(let pattern of patternPool) { // Check if pattern fits at this position for(let [drow, dcol] of pattern) { let nrow = row + drow; let ncol = col + dcol; if(nrow >= self.garden.rows || ncol >= self.garden.cols || self.garden.grid[nrow][ncol] !== null) { continue patternCheck; } } validPositions.push({row, col, pattern}); } } // If no patterns fit, fall back to single bud if(validPositions.length === 0 && emptySpaces > 0) { let randomEmpty = emptyPositions[Math.floor(Math.random() * emptyPositions.length)]; return { row: randomEmpty.row, col: randomEmpty.col, pattern: self.patterns.single[0] }; } return validPositions.length > 0 ? validPositions[Math.floor(Math.random() * validPositions.length)] : null; };
User prompt
Update as needed: // In BudSpawner class self.selectSpawnPosition = function() { // Count empty spaces let emptySpaces = 0; let emptyPositions = []; for(let row = 0; row < self.garden.rows; row++) { for(let col = 0; col < self.garden.cols; col++) { if(self.garden.grid[row][col] === null) { emptySpaces++; emptyPositions.push({row, col}); } } } // No empty spaces if(emptySpaces === 0) return null; // Select pattern size based on empty spaces let patternPool; if(emptySpaces >= 3 && Math.random() < 0.3) { patternPool = self.patterns.triples; } else if(emptySpaces >= 2 && Math.random() < 0.5) { patternPool = self.patterns.pairs; } else { patternPool = self.patterns.single; } // Find valid positions for selected pattern pool let validPositions = []; for(let {row, col} of emptyPositions) { patternCheck: for(let pattern of patternPool) { // Check if pattern fits at this position for(let [drow, dcol] of pattern) { let nrow = row + drow; let ncol = col + dcol; if(nrow >= self.garden.rows || ncol >= self.garden.cols || self.garden.grid[nrow][ncol] !== null) { continue patternCheck; } } validPositions.push({row, col, pattern}); } } // If no patterns fit, fall back to single bud if(validPositions.length === 0 && emptySpaces > 0) { let randomEmpty = emptyPositions[Math.floor(Math.random() * emptyPositions.length)]; return { row: randomEmpty.row, col: randomEmpty.col, pattern: self.patterns.single[0] }; } return validPositions.length > 0 ? validPositions[Math.floor(Math.random() * validPositions.length)] : null; };
User prompt
Update a needed: self.update = function() { if(!self.currentPattern) { // Select new spawn position and pattern let spawnInfo = self.selectSpawnPosition(); if(spawnInfo && spawnInfo.x !== undefined && spawnInfo.y !== undefined) { self.currentPattern = spawnInfo.pattern; self.nextSpawnPosition = { row: parseInt(spawnInfo.y), col: parseInt(spawnInfo.x) }; self.warningTime = 180; // Reset warning timer // Create warning indicators for pattern self.warningSprites = []; if(self.currentPattern) { for(let [drow, dcol] of self.currentPattern) { if(dcol !== undefined && drow !== undefined) { let targetRow = self.nextSpawnPosition.row + drow; let targetCol = self.nextSpawnPosition.col + dcol; let worldPos = self.garden.gridToWorld(targetCol, targetRow); let warning = self.createWarning(worldPos.x, worldPos.y); self.warningSprites.push(warning); } } } } } else if(self.nextSpawnPosition && self.currentPattern) { self.warningTime--; self.updateWarningEffects(); if(self.warningTime <= 0) { // Spawn animation self.warningSprites.forEach(sprite => { tween(sprite.scale, { x: 1.5, y: 1.5 }, { duration: 300, onFinish: () => { tween(sprite, { alpha: 0 }, { duration: 200, onFinish: () => sprite.destroy() }); } }); }); // Cache spawn position before clearing let spawnRow = self.nextSpawnPosition.row; let spawnCol = self.nextSpawnPosition.col; let pattern = self.currentPattern; // Clear state before spawning to prevent timing issues self.warningSprites = []; self.currentPattern = null; self.nextSpawnPosition = null; // Spawn buds with delay between each pattern.forEach((pos, index) => { let [drow, dcol] = pos; LK.setTimeout(() => { // Verify grid position is still empty let targetRow = spawnRow + drow; let targetCol = spawnCol + dcol; if(targetRow >= 0 && targetRow < self.garden.rows && targetCol >= 0 && targetCol < self.garden.cols && !self.garden.grid[targetRow][targetCol]) { let newBud = new Bud(); let worldPos = self.garden.gridToWorld(targetCol, targetRow); newBud.x = worldPos.x; newBud.y = worldPos.y; newBud.scale.set(0); self.garden.grid[targetRow][targetCol] = newBud; self.garden.addChild(newBud); tween(newBud.scale, { x: 1, y: 1 }, { duration: 1000, ease: 'elasticOut' }); } }, index * 200); }); } } };
User prompt
Update as needed: // Inside BudSpawner's update method, in the spawning section, change: pattern.forEach((pos, index) => { let [dy, dx] = pos; LK.setTimeout(() => { // Verify grid position is still empty let targetY = spawnY + dy; let targetX = spawnX + dx; if(targetY >= 0 && targetY < self.garden.rows && targetX >= 0 && targetX < self.garden.cols && !self.garden.grid[targetX][targetY]) { // Swap X and Y here let newBud = new Bud(); let worldPos = self.garden.gridToWorld(targetX, targetY); newBud.x = worldPos.x; newBud.y = worldPos.y; newBud.scale.set(0); self.garden.grid[targetX][targetY] = newBud; // Swap X and Y here self.garden.addChild(newBud); tween(newBud.scale, { x: 1, y: 1 }, { duration: 1000, ease: 'elasticOut' }); } }, index * 200); }); ``` Also update the warning creation part earlier in the method: ```javascript // In the warning creation section: if(self.currentPattern) { for(let [dy, dx] of self.currentPattern) { if(dx !== undefined && dy !== undefined) { let gridX = self.nextSpawnPosition.x + dx; let gridY = self.nextSpawnPosition.y + dy; let worldPos = self.garden.gridToWorld(gridX, gridY); // Verify the position is valid before creating warning if(!self.garden.grid[gridX][gridY]) { // Swap X and Y here let warning = self.createWarning(worldPos.x, worldPos.y); self.warningSprites.push(warning); } } } }
User prompt
Now let's fix the BudSpawner's update method. Replace it entirely with: ```javascript self.update = function() { if(!self.currentPattern) { // Select new spawn position and pattern let spawnInfo = self.selectSpawnPosition(); if(spawnInfo && spawnInfo.x !== undefined && spawnInfo.y !== undefined) { self.currentPattern = spawnInfo.pattern; self.nextSpawnPosition = { x: parseInt(spawnInfo.x), y: parseInt(spawnInfo.y) }; self.warningTime = 180; // Reset warning timer // Create warning indicators for pattern self.warningSprites = []; if(self.currentPattern) { for(let [dy, dx] of self.currentPattern) { if(dx !== undefined && dy !== undefined) { let gridX = self.nextSpawnPosition.x + dx; let gridY = self.nextSpawnPosition.y + dy; let worldPos = self.garden.gridToWorld(gridX, gridY); let warning = self.createWarning(worldPos.x, worldPos.y); self.warningSprites.push(warning); } } } } } else if(self.nextSpawnPosition && self.currentPattern) { self.warningTime--; self.updateWarningEffects(); if(self.warningTime <= 0) { // Spawn animation self.warningSprites.forEach(sprite => { tween(sprite.scale, { x: 1.5, y: 1.5 }, { duration: 300, onFinish: () => { tween(sprite, { alpha: 0 }, { duration: 200, onFinish: () => sprite.destroy() }); } }); }); // Cache spawn position before clearing let spawnX = self.nextSpawnPosition.x; let spawnY = self.nextSpawnPosition.y; let pattern = self.currentPattern; // Clear state before spawning to prevent timing issues self.warningSprites = []; self.currentPattern = null; self.nextSpawnPosition = null; // Spawn buds with delay between each pattern.forEach((pos, index) => { let [dy, dx] = pos; LK.setTimeout(() => { // Verify grid position is still empty let targetY = spawnY + dy; let targetX = spawnX + dx; if(targetY >= 0 && targetY < self.garden.rows && targetX >= 0 && targetX < self.garden.cols && !self.garden.grid[targetY][targetX]) { let newBud = new Bud(); let worldPos = self.garden.gridToWorld(targetX, targetY); newBud.x = worldPos.x; newBud.y = worldPos.y; newBud.scale.set(0); self.garden.grid[targetY][targetX] = newBud; self.garden.addChild(newBud); tween(newBud.scale, { x: 1, y: 1 }, { duration: 1000, ease: 'elasticOut' }); } }, index * 200); }); } } };
User prompt
Update as needed: First, let's modify the `gridToWorld` method in the Garden class to be more robust: ```javascript self.gridToWorld = function(gridX, gridY) { if (typeof gridX !== 'number' || typeof gridY !== 'number') { console.log('Invalid grid coordinates:', gridX, gridY); return { x: self.x, y: self.y }; // Return default position if invalid } return { x: self.x + gridX * self.cellSize + self.cellSize / 2, y: self.y + gridY * self.cellSize + self.cellSize / 2 }; };
User prompt
Please fix the bug: 'Timeout.tick error: null is not an object (evaluating 'self.nextSpawnPosition.x')' in or related to this line: 'var worldPos = self.garden.gridToWorld(self.nextSpawnPosition.x + dx, self.nextSpawnPosition.y + dy);' Line Number: 604
User prompt
Update as needed with: // Inside BudSpawner's update method, in the warningTime <= 0 section if(self.warningTime <= 0 && self.nextSpawnPosition) { // Add null check // Spawn animation self.warningSprites.forEach(sprite => { tween(sprite.scale, { x: 1.5, y: 1.5 }, { duration: 300, onFinish: () => { tween(sprite, { alpha: 0 }, { duration: 200, onFinish: () => sprite.destroy() }); } }); }); // Spawn buds with delay between each if(self.currentPattern) { // Add pattern check self.currentPattern.forEach((pos, index) => { if(!pos) return; // Add position check LK.setTimeout(() => { let [dy, dx] = pos; if(typeof dx === 'undefined' || typeof dy === 'undefined') return; // Add coordinate check let newBud = new Bud(); let worldPos = self.garden.gridToWorld( self.nextSpawnPosition.x + dx, self.nextSpawnPosition.y + dy ); newBud.x = worldPos.x; newBud.y = worldPos.y; newBud.scale.set(0); self.garden.grid[self.nextSpawnPosition.y + dy][self.nextSpawnPosition.x + dx] = newBud; self.garden.addChild(newBud); tween(newBud.scale, { x: 1, y: 1 }, { duration: 1000, ease: 'elasticOut' }); }, index * 200); }); } self.warningSprites = []; self.currentPattern = null; self.nextSpawnPosition = null; }
User prompt
Please fix the bug: 'Timeout.tick error: null is not an object (evaluating 'self.nextSpawnPosition.x')' in or related to this line: 'var worldPos = self.garden.gridToWorld(self.nextSpawnPosition.x + dx, self.nextSpawnPosition.y + dy);' Line Number: 597
User prompt
Please fix the bug: 'Timeout.tick error: null is not an object (evaluating 'self.nextSpawnPosition.x')' in or related to this line: 'var worldPos = self.garden.gridToWorld(self.nextSpawnPosition.x + dx, self.nextSpawnPosition.y + dy);' Line Number: 595
User prompt
Update as needed: self.init = function() { // Center the grid on screen self.x = (2048 - self.cols * self.cellSize) / 2; self.y = (2732 - self.rows * self.cellSize) / 2 + 2732 * 0.12 - 400; // Initialize empty grid for (var i = 0; i < self.rows; i++) { self.grid[i] = []; for (var j = 0; j < self.cols; j++) { self.grid[i][j] = null; } } };
User prompt
Update as needed with: else { self.warningTime--; self.updateWarningEffects(); if(self.warningTime <= 0) { // Spawn animation self.warningSprites.forEach(sprite => { tween(sprite.scale, { x: 1.5, y: 1.5 }, { duration: 300, onFinish: () => { tween(sprite, { alpha: 0 }, { duration: 200, onFinish: () => sprite.destroy() }); } }); }); // Spawn buds with delay between each self.currentPattern.forEach((pos, index) => { LK.setTimeout(() => { let [dy, dx] = pos; let newBud = new Bud(); let worldPos = self.garden.gridToWorld( self.nextSpawnPosition.x + dx, self.nextSpawnPosition.y + dy ); newBud.x = worldPos.x; newBud.y = worldPos.y; newBud.scale.set(0); self.garden.grid[self.nextSpawnPosition.y + dy][self.nextSpawnPosition.x + dx] = newBud; self.garden.addChild(newBud); tween(newBud.scale, { x: 1, y: 1 }, { duration: 1000, ease: 'elasticOut' }); }, index * 200); // 200ms delay between each bud spawn }); self.warningSprites = []; self.currentPattern = null; self.nextSpawnPosition = null; } } };
User prompt
Update as needed: self.update = function() { if(!self.currentPattern) { // Select new spawn position and pattern let spawnInfo = self.selectSpawnPosition(); if(spawnInfo) { self.currentPattern = spawnInfo.pattern; self.nextSpawnPosition = {x: spawnInfo.x, y: spawnInfo.y}; self.warningTime = 180; // Reset warning timer // Create warning indicators for pattern self.warningSprites = []; for(let [dy, dx] of self.currentPattern) { let worldPos = self.garden.gridToWorld( self.nextSpawnPosition.x + dx, self.nextSpawnPosition.y + dy ); let warning = self.createWarning(worldPos.x, worldPos.y); self.warningSprites.push(warning); } } }
User prompt
Update as necessary: Finally, modify the BudSpawner's update method to replace the existing one: ```javascript self.update = function() { if(!self.currentPattern) { // Select new spawn position and pattern let spawnInfo = self.selectSpawnPosition(); if(spawnInfo) { self.currentPattern = spawnInfo.pattern; self.nextSpawnPosition = {x: spawnInfo.x, y: spawnInfo.y}; self.warningTime = 180; // Reset warning timer // Create warning indicators for pattern self.warningSprites = []; for(let [dy, dx] of self.currentPattern) { let worldPos = self.garden.gridToWorld( self.nextSpawnPosition.x + dx, self.nextSpawnPosition.y + dy ); let warning = self.createWarning(worldPos.x, worldPos.y); self.warningSprites.push(warning); } } } else { // Update warning effect self.warningTime--; // Pulse warning sprites let pulse = 0.3 + Math.abs(Math.sin(LK.ticks * 0.05)) * 0.3; self.warningSprites.forEach(sprite => { sprite.scale.set(pulse); sprite.rotation = Math.sin(LK.ticks * 0.03) * 0.1; }); // When warning time expires, spawn buds if(self.warningTime <= 0) { // Remove warning sprites self.warningSprites.forEach(sprite => sprite.destroy()); self.warningSprites = []; // Spawn buds in pattern for(let [dy, dx] of self.currentPattern) { let newBud = new Bud(); let worldPos = self.garden.gridToWorld( self.nextSpawnPosition.x + dx, self.nextSpawnPosition.y + dy ); newBud.x = worldPos.x; newBud.y = worldPos.y; newBud.scale.set(0); self.garden.grid[self.nextSpawnPosition.y + dy][self.nextSpawnPosition.x + dx] = newBud; self.garden.addChild(newBud); // Grow animation tween(newBud.scale, {x: 1, y: 1}, { duration: 1000, ease: 'elasticOut' }); } // Reset for next spawn self.currentPattern = null; self.nextSpawnPosition = null; } } };
Code edit (1 edits merged)
Please save this source code
User prompt
Add this function directly into the BudSpawner class: self.updateWarningEffects = function() { let timeProgress = (180 - self.warningTime) / 180; // 0 to 1 let intensity = Math.sin(timeProgress * Math.PI * 4) * 0.5 + 0.5; // Pulsing effect self.warningSprites.forEach(sprite => { // Increase glow and intensity as spawn time approaches sprite.children[0].alpha = 0.3 + (intensity * 0.7); sprite.children[0].scale.set(0.8 + (intensity * 0.4)); // Add subtle shake when close to spawning if(self.warningTime < 60) { // Last second sprite.x += (Math.random() - 0.5) * 2; sprite.y += (Math.random() - 0.5) * 2; } }); };
User prompt
Add this function to the budspawner class: self.updateWarningEffects = function() { let timeProgress = (180 - self.warningTime) / 180; // 0 to 1 let intensity = Math.sin(timeProgress * Math.PI * 4) * 0.5 + 0.5; // Pulsing effect self.warningSprites.forEach(sprite => { // Increase glow and intensity as spawn time approaches sprite.children[0].alpha = 0.3 + (intensity * 0.7); sprite.children[0].scale.set(0.8 + (intensity * 0.4)); // Add subtle shake when close to spawning if(self.warningTime < 60) { // Last second sprite.x += (Math.random() - 0.5) * 2; sprite.y += (Math.random() - 0.5) * 2; } }); };
User prompt
Update with: 4. Add this glow effect method for the warnings: ```javascript self.updateWarningEffects = function() { let timeProgress = (180 - self.warningTime) / 180; // 0 to 1 let intensity = Math.sin(timeProgress * Math.PI * 4) * 0.5 + 0.5; // Pulsing effect self.warningSprites.forEach(sprite => { // Increase glow and intensity as spawn time approaches sprite.children[0].alpha = 0.3 + (intensity * 0.7); sprite.children[0].scale.set(0.8 + (intensity * 0.4)); // Add subtle shake when close to spawning if(self.warningTime < 60) { // Last second sprite.x += (Math.random() - 0.5) * 2; sprite.y += (Math.random() - 0.5) * 2; } }); };
User prompt
Add this function directly into the BudSpawner class: self.createWarning = function(x, y) { let warning = new Container(); let crack = warning.attachAsset('Crack', { anchorX: 0.5, anchorY: 0.5, alpha: 0 }); warning.x = x; warning.y = y; warning.scale.set(0); // Create the growing crack animation tween(warning.scale, { x: 1, y: 1 }, { duration: 1000, ease: 'elasticOut' }); tween(crack, { alpha: 0.8 }, { duration: 500 }); // Add rotation animation warning.update = function() { warning.rotation = Math.sin(LK.ticks * 0.03) * 0.1; }; self.garden.addChild(warning); return warning; };
User prompt
Update as needed: Replace the selectSpawnPosition method with this more adaptive version: ```javascript self.selectSpawnPosition = function() { // Count empty spaces let emptySpaces = 0; let emptyPositions = []; for(let y = 0; y < self.garden.rows; y++) { for(let x = 0; x < self.garden.cols; x++) { if(self.garden.grid[y][x] === null) { emptySpaces++; emptyPositions.push({x, y}); } } } // No empty spaces if(emptySpaces === 0) return null; // Select pattern size based on empty spaces let patternPool; if(emptySpaces >= 3 && Math.random() < 0.3) { patternPool = self.patterns.triples; } else if(emptySpaces >= 2 && Math.random() < 0.5) { patternPool = self.patterns.pairs; } else { patternPool = self.patterns.single; } // Find valid positions for selected pattern pool let validPositions = []; for(let {x, y} of emptyPositions) { patternCheck: for(let pattern of patternPool) { // Check if pattern fits at this position for(let [dy, dx] of pattern) { let ny = y + dy; let nx = x + dx; if(ny >= self.garden.rows || nx >= self.garden.cols || self.garden.grid[ny][nx] !== null) { continue patternCheck; } } validPositions.push({x, y, pattern}); } } // If no patterns fit, fall back to single bud if(validPositions.length === 0 && emptySpaces > 0) { let randomEmpty = emptyPositions[Math.floor(Math.random() * emptyPositions.length)]; return { x: randomEmpty.x, y: randomEmpty.y, pattern: self.patterns.single[0] }; } return validPositions.length > 0 ? validPositions[Math.floor(Math.random() * validPositions.length)] : null; };
/**** * Plugins ****/ var tween = LK.import("@upit/tween.v1"); /**** * Classes ****/ var BasicFlower = Container.expand(function (color) { var self = Container.call(this); // Store flower color self.color = color || 'red'; // Default to red if no color specified // Map color to asset name var assetMap = { 'red': 'RedFlower', 'blue': 'BlueFlower', 'yellow': 'YellowFlower' }; // Attach bud asset first var budGraphics = self.attachAsset('Bud', { anchorX: 0.5, anchorY: 0.5 }); // Use correct asset based on color var flowerGraphics = self.attachAsset(assetMap[self.color], { anchorX: 0.5, anchorY: 0.5 }); self.hasActivePollen = false; self.fairyParticles = []; self.FAIRY_COUNT = 3; self.update = function () { var scaleFactor = 1 + Math.sin(LK.ticks * 0.1) * 0.05; flowerGraphics.scale.x = scaleFactor; flowerGraphics.scale.y = scaleFactor; flowerGraphics.rotation = Math.sin(LK.ticks * 0.1) * 0.05; }; self.bloom = function () { // Scale animation self.scale.set(0.3, 0.3); tween(self.scale, { x: 1, y: 1 }, { duration: 1000, onFinish: function onFinish() { self.hasActivePollen = true; } }); // Create initial burst particles self.createPollenBurst(self.x, self.y); self.removeFairyParticles = function () { self.fairyParticles.forEach(function (fairy) { self.removeChild(fairy); }); self.fairyParticles = []; }; }; self.createPollenBurst = function (x, y) { for (var i = 0; i < 12; i++) { var particle = new PollenParticle().init('burst'); var angle = i / 12 * Math.PI * 2; particle.x = x; particle.y = y; particle.vx = Math.cos(angle) * 3; particle.vy = Math.sin(angle) * 3; if (self.parent) { self.parent.addChild(particle); } } }; // Initialize pollen status self.pollenCollected = true; // Set to true so pollen can't be collected }); var Bee = Container.expand(function () { var self = Container.call(this); self.currentColor = null; // Add this back // Movement properties var beeSprite = self.attachAsset('Bee', { anchorX: 0.5, anchorY: 0.5 }); // Movement properties self.targetX = self.x; self.targetY = self.y; self.moveSpeed = 0.1; // Adjust this for faster/slower following self.isMoving = false; // New pollen properties self.maxPollen = 14; // Exactly enough for 2 buds (2 * 7 = 14) self.currentPollen = 0; // Current amount being carried self.pollenTypes = []; // Array to track different pollen colors // Format: [{color: 'red', amount: 30}, ...] self.pollenMeter = new PollenMeter(); self.pollenMeter.y = -50; // Position above bee self.addChild(self.pollenMeter); // Add trail property self.pollenTrail = new PollenTrail(); game.addChild(self.pollenTrail); // Add to game so it renders behind bee // Pollen collection method self.collectPollen = function (flower) { if (self.currentPollen < self.maxPollen && flower.hasActivePollen && !flower.pollenCollected) { if (self.currentPollen >= self.maxPollen) { return; // Don't collect if we're at max } var collectAmount = Math.min(14, self.maxPollen - self.currentPollen); // Add to pollen types first var existingType = self.pollenTypes.find(function (p) { return p.color === flower.color; }); if (existingType) { existingType.amount += collectAmount; } else { self.pollenTypes.push({ color: flower.color, amount: collectAmount }); } // Restart trail with current color if (self.pollenTrail) { self.pollenTrail.active = false; // Force restart self.pollenTrail.startTrail(self.x, self.y, garden, self); } // Set currentPollen to match total of all types self.currentPollen = self.pollenTypes.reduce(function (total, type) { return total + type.amount; }, 0); self.currentColor = flower.color; // Add this back self.pollenTrail.currentColor = flower.color; if (!flower.isSourceFlower) { flower.pollenCollected = true; flower.hasActivePollen = false; flower.removeFairyParticles(); } else { // Source flowers reset immediately flower.hasActivePollen = true; flower.pollenCollected = false; } // Update UI game.beeUI.updatePollen(flower.color, self.currentPollen, self.maxPollen); // Update UI using game.beeUI // Update meter self.pollenMeter.updateMeter(self.currentPollen, self.maxPollen); // Find exact position of this flower in grid var foundGridPos = false; var gridX = 0; var gridY = 0; for (var y = 0; y < garden.rows; y++) { for (var x = 0; x < garden.cols; x++) { if (garden.grid[y][x] === flower) { gridX = x; gridY = y; foundGridPos = true; break; } } if (foundGridPos) { break; } } if (foundGridPos && game.flowerMatcher) { game.flowerMatcher.checkForMatches(garden, gridX, gridY); } } }; self.checkFlowerCollision = function () { // Convert bee position to garden's local space var localPos = garden.toLocal({ x: self.x, y: self.y }, game); // Check source flowers first if (garden.sourceFlowers) { garden.sourceFlowers.children.forEach(function (flower) { var dx = localPos.x - flower.x; var dy = localPos.y - flower.y; var distance = Math.sqrt(dx * dx + dy * dy); if (distance < garden.cellSize / 2) { self.collectPollen(flower); } }); } // Calculate grid position var gridX = Math.floor(localPos.x / garden.cellSize); var gridY = Math.floor(localPos.y / garden.cellSize); // Check if position is within grid bounds if (gridX >= 0 && gridX < garden.cols && gridY >= 0 && gridY < garden.rows) { var gridItem = garden.grid[gridY][gridX]; if (gridItem) { if (gridItem.isFlower && gridItem.hasActivePollen) { // Collect pollen from flower self.collectPollen(gridItem); } else if (gridItem && gridItem.isBud && self.currentPollen > 0) { if (gridItem.isBeingPollinated) { return; } gridItem.isBeingPollinated = true; var pollenColor = self.usePollen(gridItem); if (!pollenColor) { gridItem.isBeingPollinated = false; return; } // Double-check the bud is still there if (garden.grid[gridY][gridX] === gridItem && gridItem.isBud) { // Force remove the bud and clear grid position garden.removeChild(gridItem); garden.grid[gridY][gridX] = null; gridItem.destroy(); // Fully destroy the bud // Only create flower if position is clear if (!garden.grid[gridY][gridX]) { var newFlower = new BasicFlower(pollenColor); newFlower.x = gridItem.x; newFlower.y = gridItem.y; newFlower.isFlower = true; garden.grid[gridY][gridX] = newFlower; garden.addChild(newFlower); newFlower.bloom(); } } else { gridItem.isBeingPollinated = false; } } } } }; self.update = function () { if (self.isMoving) { // Smooth movement towards target self.x += (self.targetX - self.x) * self.moveSpeed; self.y += (self.targetY - self.y) * self.moveSpeed; // Calculate rotation based on movement direction var dx = self.targetX - self.x; var dy = self.targetY - self.y; var angle = Math.atan2(dy, dx); self.rotation = angle + Math.PI / 2; // Update trail when carrying pollen if (self.currentPollen > 0) { // Make sure trail starts if not already active if (!self.pollenTrail.active) { self.pollenTrail.startTrail(self.x, self.y, garden); } self.pollenTrail.updateTrail(self.x, self.y); } // Add collision check self.checkFlowerCollision(); } }; // Pollen usage method self.usePollen = function (bud) { // Add debug logs var pollenUsed = 7; if (self.currentPollen > 0 && self.pollenTypes.length > 0) { // If we have less than pollenUsed, use remaining pollen if (self.currentPollen < pollenUsed) { pollenUsed = self.currentPollen; } // Reduce pollen instead of zeroing it self.currentPollen -= pollenUsed; // Update pollen types properly var pType = self.pollenTypes[0]; var color = pType.color; // New line to store color pType.amount -= pollenUsed; if (self.currentPollen <= 0) { self.pollenTypes = []; // Clear all pollen types when empty } // Update UI game.beeUI.updatePollen(color, self.currentPollen, self.maxPollen); // Update UI using game.beeUI // Only clear type if it's empty if (pType.amount <= 0) { self.pollenTypes.shift(); } // Only end trail if we're actually out of pollen if (self.currentPollen <= 0 || self.pollenTypes.length === 0) { self.pollenTrail.active = false; self.pollenTrail.points = []; } return color; // Updated to return color } return null; }; return self; }); // Bud class var Bud = Container.expand(function () { var self = Container.call(this); var budGraphics = self.attachAsset('Bud', { anchorX: 0.5, anchorY: 0.5 }); // Timer properties self.bloomTimer = 5 * 60; // 5 seconds (assuming 60fps) self.isBud = true; self.isFlower = false; self.isBeingReplaced = false; // Add this flag // Update now handles timer and auto-bloom self.update = function () { // Basic animation self.rotation = Math.sin(LK.ticks * 0.05) * 0.1; }; self.autoBloom = function () { if (!self.isBud || self.isBeingReplaced) { return; // Prevent double-blooming or if already being replaced } self.isBeingReplaced = true; // Get grid position var localPos = garden.toLocal({ x: self.x, y: self.y }, game); var gridX = Math.floor(localPos.x / garden.cellSize); var gridY = Math.floor(localPos.y / garden.cellSize); // Create random color flower var flowerColors = ['red', 'blue', 'yellow']; var randomColor = flowerColors[Math.floor(Math.random() * flowerColors.length)]; var newFlower = new BasicFlower(randomColor); newFlower.x = self.x; newFlower.y = self.y; newFlower.isFlower = true; newFlower.hasActivePollen = false; // Auto-bloomed flowers start dead // Update grid if (garden.grid[gridY] && garden.grid[gridY][gridX] === self) { garden.removeChild(self); garden.grid[gridY][gridX] = newFlower; garden.addChild(newFlower); newFlower.bloom(); } self.isBud = false; }; return self; }); // Add BudSpawner to handle progressive difficulty var BudSpawner = Container.expand(function () { var self = Container.call(this); self.patterns = { single: [[[0, 0]]], pairs: [[[0, 0], [0, 1]], // horizontal [[0, 0], [1, 0]], // vertical [[0, 0], [1, 1]] // diagonal ], triples: [[[0, 0], [0, 1], [0, 2]], // horizontal [[0, 0], [1, 0], [2, 0]], // vertical [[0, 0], [1, 1], [2, 2]], // diagonal [[0, 0], [0, 1], [1, 0]] // L shape ] }; self.warningTime = 180; // 3 seconds at 60fps self.currentPattern = null; self.warningSprites = []; self.nextSpawnPosition = null; self.createWarning = function (x, y) { var warning = new Container(); var crack = warning.attachAsset('Crack', { anchorX: 0.5, anchorY: 0.5, alpha: 0 }); warning.x = x; warning.y = y; warning.scale.set(0); // Create the growing crack animation tween(warning.scale, { x: 1, y: 1 }, { duration: 1000, ease: 'elasticOut' }); tween(crack, { alpha: 0.8 }, { duration: 500 }); // Add rotation animation warning.update = function () { warning.rotation = Math.sin(LK.ticks * 0.03) * 0.1; }; self.garden.addChild(warning); return warning; }; self.garden = null; self.gameTime = 0; self.init = function (garden) { self.garden = garden; self.gameTime = 0; self.firstBloom = false; // Just set the first bloom timer self.nextBloomTime = 90; // 1.5 seconds for first bloom }; self.findEmptySpot = function () { var validSpots = []; // Match flower removal coordinate system [gridY][gridX] for (var gridY = 0; gridY < self.garden.rows; gridY++) { for (var gridX = 0; gridX < self.garden.cols; gridX++) { if (!self.garden.grid[gridY][gridX]) { validSpots.push({ x: gridX, y: gridY }); } } } if (validSpots.length > 0) { return validSpots[Math.floor(Math.random() * validSpots.length)]; } return null; }; self.selectSpawnPosition = function () { // Count empty spaces var emptySpaces = 0; var emptyPositions = []; for (var y = 0; y < self.garden.rows; y++) { for (var x = 0; x < self.garden.cols; x++) { if (self.garden.grid[y][x] === null) { emptySpaces++; emptyPositions.push({ x: x, y: y }); } } } // No empty spaces if (emptySpaces === 0) { return null; } // Select pattern size based on empty spaces var patternPool; if (emptySpaces >= 3 && Math.random() < 0.3) { patternPool = self.patterns.triples; } else if (emptySpaces >= 2 && Math.random() < 0.5) { patternPool = self.patterns.pairs; } else { patternPool = self.patterns.single; } // Find valid positions for selected pattern pool var validPositions = []; for (var _i = 0, _emptyPositions = emptyPositions; _i < _emptyPositions.length; _i++) { var _emptyPositions$_i = _emptyPositions[_i], x = _emptyPositions$_i.x, y = _emptyPositions$_i.y; var _iterator = _createForOfIteratorHelper2(patternPool), _step; try { patternCheck: for (_iterator.s(); !(_step = _iterator.n()).done;) { var pattern = _step.value; // Check if pattern fits at this position var _iterator2 = _createForOfIteratorHelper2(pattern), _step2; try { for (_iterator2.s(); !(_step2 = _iterator2.n()).done;) { var _step2$value = _slicedToArray2(_step2.value, 2), dy = _step2$value[0], dx = _step2$value[1]; var ny = y + dy; var nx = x + dx; if (ny >= self.garden.rows || nx >= self.garden.cols || self.garden.grid[ny][nx] !== null) { continue patternCheck; } } } catch (err) { _iterator2.e(err); } finally { _iterator2.f(); } validPositions.push({ x: x, y: y, pattern: pattern }); } } catch (err) { _iterator.e(err); } finally { _iterator.f(); } } // If no patterns fit, fall back to single bud if (validPositions.length === 0 && emptySpaces > 0) { var randomEmpty = emptyPositions[Math.floor(Math.random() * emptyPositions.length)]; return { x: randomEmpty.x, y: randomEmpty.y, pattern: self.patterns.single[0] }; } return validPositions.length > 0 ? validPositions[Math.floor(Math.random() * validPositions.length)] : null; }; self.getSpawnRate = function () { // Keep original timing logic return 16; // Spawn every frame for immediate filling }; self.update = function () { self.gameTime = LK.ticks / 60; // Count down to next bloom if (self.nextBloomTime > 0) { self.nextBloomTime--; if (self.nextBloomTime <= 0) { // Find a random bud to bloom var validBuds = []; for (var i = 0; i < self.garden.rows; i++) { for (var j = 0; j < self.garden.cols; j++) { var gridItem = self.garden.grid[i][j]; if (gridItem && gridItem.isBud) { validBuds.push({ item: gridItem, x: j, y: i }); } } } if (validBuds.length > 0) { // Pick a random bud var randomIndex = Math.floor(Math.random() * validBuds.length); var selectedBud = validBuds[randomIndex]; // Create the flower var flowerColors = ['red', 'blue', 'yellow']; var randomColor = flowerColors[Math.floor(Math.random() * flowerColors.length)]; var newFlower = new BasicFlower(randomColor); newFlower.x = selectedBud.item.x; newFlower.y = selectedBud.item.y; newFlower.isFlower = true; newFlower.hasActivePollen = false; // Auto-bloomed flowers start without pollen // Update grid self.garden.removeChild(selectedBud.item); self.garden.grid[selectedBud.y][selectedBud.x] = newFlower; self.garden.addChild(newFlower); newFlower.bloom(); // Set timer for next bloom (15-20 seconds) self.nextBloomTime = (15 + Math.random() * 5) * 60; } } } }; }); // Simplified FlowerManager - mainly for flower conversion and management var FlowerManager = Container.expand(function () { var self = Container.call(this); // Convert a bud to a flower self.convertBudToFlower = function (bud, garden) { var gridPos = { x: Math.floor((bud.y - garden.y) / garden.cellSize), y: Math.floor((bud.x - garden.x) / garden.cellSize) }; var newFlower = new BasicFlower(); newFlower.x = bud.x; newFlower.y = bud.y; newFlower.isFlower = true; garden.removeChild(bud); garden.grid[gridPos.x][gridPos.y] = newFlower; garden.addChild(newFlower); // When a flower blooms: createPollenBurst(newFlower.x, newFlower.y); return newFlower; }; // Empty touch handler as we're using the new trail system self.handleTouch = function () {}; }); var FlowerMatcher = Container.expand(function () { var self = Container.call(this); self.checkForMatches = function (garden, x, y) { var matches = self.findMatches(garden, x, y); if (matches.length >= 3) { self.clearMatches(garden, matches); return true; } return false; }; self.findMatches = function (garden, startX, startY) { if (startY < 0 || startY >= garden.rows || startX < 0 || startX >= garden.cols) { return []; } var startFlower = garden.grid[startY][startX]; if (!startFlower || !startFlower.isFlower) { return []; } var flowerColor = startFlower.color; var matches = []; var visited = {}; var _checkFlower = function checkFlower(x, y) { if (x < 0 || x >= garden.cols || y < 0 || y >= garden.rows) { return; } var key = x + ',' + y; if (visited[key]) { return; } visited[key] = true; var flower = garden.grid[y][x]; if (flower && flower.isFlower && !flower.hasActivePollen && flower.scale.x >= 1 && flower.pollenCollected && flower.color === flowerColor) { matches.push({ x: x, y: y, flower: flower }); _checkFlower(x + 1, y); _checkFlower(x - 1, y); _checkFlower(x, y + 1); _checkFlower(x, y - 1); } }; _checkFlower(startX, startY); return matches.length >= 3 ? matches : []; }; self.clearMatches = function (garden, matches) { matches.forEach(function (match) { var flower = match.flower; // Expand and pop animation tween(flower.scale, { x: 1.3, // Expand to 1.5 times the size y: 1.3 // Expand to 1.5 times the size }, { duration: 500, onFinish: function onFinish() { // Check if flower is still in expected position if (garden.grid[match.y][match.x] === flower) { // Create petal burst after animation self.createPetalBurst(match.x, match.y, flower.color); garden.grid[match.y][match.x] = null; garden.removeChild(flower); // Only create new bud if position is still empty if (!garden.grid[match.y][match.x]) { var newBud = new Bud(); newBud.x = flower.x; newBud.y = flower.y; newBud.scale.set(0, 0); garden.grid[match.y][match.x] = newBud; garden.addChild(newBud); tween(newBud.scale, { x: 1, y: 1 }, { duration: 1000, ease: 'elasticOut' }); } } } }); }); }; self.createPetalBurst = function (x, y, color) { var colorTints = { 'red': 0xFF0000, 'blue': 0x0000FF, 'yellow': 0xFFFF00, 'purple': 0x800080, 'orange': 0xFFA500, 'green': 0x00FF00 }; var worldPos = garden.gridToWorld(x, y); for (var i = 0; i < 12; i++) { var particle = new PollenParticle().init('burst'); var angle = i / 12 * Math.PI * 2; particle.x = worldPos.x; particle.y = worldPos.y; particle.vx = Math.cos(angle) * 8; particle.vy = Math.sin(angle) * 8; particle.scale.set(0.8); particle.tint = colorTints[color]; game.addChild(particle); } }; return self; }); //<Assets used in the game will automatically appear here> // Garden class to manage the grid of soil var Garden = Container.expand(function () { var self = Container.call(this); // Add new helper method for safe grid updates self.updateGridPosition = function (row, col, item) { if (row >= 0 && row < self.rows && col >= 0 && col < self.cols) { // First clear any existing item var existingItem = self.grid[row][col]; if (existingItem && existingItem.parent) { existingItem.parent.removeChild(existingItem); } // Then set new item self.grid[row][col] = item; return true; } return false; }; self.grid = []; self.rows = 8; self.cols = 8; self.cellSize = 210; self.init = function () { var _this = this; // Add source flowers this.sourceFlowers = new Container(); this.addChild(this.sourceFlowers); // Calculate positions var centerX = this.cols * this.cellSize / 2; // Blue flower at top center var blueFlower = new SourceFlower('blue'); blueFlower.x = centerX; blueFlower.y = -75; // Just above top row this.sourceFlowers.addChild(blueFlower); // Red flower under bottom left bud var redFlower = new SourceFlower('red'); redFlower.x = self.cellSize / 2; // Align with first column's center redFlower.y = self.rows * self.cellSize + self.cellSize / 2; // Below last row this.sourceFlowers.addChild(redFlower); // Yellow flower under bottom right bud var yellowFlower = new SourceFlower('yellow'); yellowFlower.x = self.cols * self.cellSize - self.cellSize / 2; // Align with last column's center yellowFlower.y = self.rows * self.cellSize + self.cellSize / 2; // Below last row this.sourceFlowers.addChild(yellowFlower); // Center the grid on screen self.x = (2048 - self.cols * self.cellSize) / 2; self.y = (2732 - self.rows * self.cellSize) / 2 + 2732 * 0.12 - 400; // Initialize grid and fill with buds for (var i = 0; i < self.rows; i++) { self.grid[i] = []; for (var j = 0; j < self.cols; j++) { var bud = new Bud(); bud.x = j * self.cellSize + self.cellSize / 2; bud.y = i * self.cellSize + self.cellSize / 2; bud.isBud = true; bud.isFlower = false; self.grid[i][j] = bud; self.addChild(bud); } } }; // Helper method to convert grid position to world position self.gridToWorld = function (gridX, gridY) { return { x: self.x + gridX * self.cellSize + self.cellSize / 2, y: self.y + gridY * self.cellSize + self.cellSize / 2 }; }; // Helper method to convert world position to grid position self.worldToGrid = function (worldX, worldY) { var localX = worldX - self.x; var localY = worldY - self.y; return { x: Math.floor(localX / self.cellSize), y: Math.floor(localY / self.cellSize) }; }; }); // GardenBackground class var GardenBackground = Container.expand(function () { var self = Container.call(this); var gardenBackground = LK.getAsset('GardenBackground', { anchorX: 0.5, anchorY: 0.5, scaleX: 1.02, scaleY: 1.02, x: 2048 / 2, y: 2732 / 2 }); self.addChild(gardenBackground); }); var Hive = Container.expand(function () { var self = Container.call(this); var hiveSprite = self.attachAsset('Hive', { anchorX: 0.5, anchorY: 0.5 }); self.storedPollen = { 'red': 0, 'blue': 0, 'yellow': 0 }; // Add meter above hive self.pollenMeter = new PollenMeter(); self.pollenMeter.y = -200; self.addChild(self.pollenMeter); // Collection method self.collectFromBee = function (bee) { if (bee.currentPollen > 0) { // Transfer each type of pollen bee.pollenTypes.forEach(function (type) { // Initialize hive's stored pollen for this color if needed if (!self.storedPollen) { self.storedPollen = {}; } if (!self.storedPollen[type.color]) { self.storedPollen[type.color] = 0; } // Add to hive's storage self.storedPollen[type.color] += type.amount; // Update hive UI game.hiveUI.updatePollen(type.color, self.storedPollen[type.color], 1000); // Update UI using game.hiveUI }); // Create particles spread across the hive's width var particleCount = 20; var hiveWidth = 300; for (var i = 0; i < particleCount; i++) { var particle = new PollenParticle().init('transfer'); particle.x = -hiveWidth / 2 + Math.random() * hiveWidth; particle.y = -200; particle.vx = (Math.random() - 0.5) * 0.5; particle.vy = 1 + Math.random(); particle.twinkleOffset = Math.random() * Math.PI * 2; particle.twinkleSpeed = 0.1 + Math.random() * 0.1; particle.scale.set(0.5); self.addChild(particle); } // Clear bee's pollen bee.currentPollen = 0; bee.pollenTypes = []; // Update bee UI to show empty ['red', 'blue', 'yellow'].forEach(function (color) { game.beeUI.updatePollen(color, 0, bee.maxPollen); // Clear bee's pollen using game.beeUI }); // End bee's trail bee.pollenTrail.active = false; bee.pollenTrail.points = []; } }; return self; }); var PollenMeter = Container.expand(function () { var self = Container.call(this); // Create background bar var background = LK.getAsset('marker', { anchorX: 0.5, anchorY: 0.5, scaleX: 1, scaleY: 0.1 }); self.addChild(background); // Create fill bar var fill = LK.getAsset('marker', { anchorX: 0.5, anchorY: 0.5, scaleX: 0, scaleY: 0.1 }); fill.tint = 0xFFFF00; // Yellow for pollen self.fillBar = fill; self.addChild(fill); // Update method to show current pollen self.updateMeter = function (current, max) { fill.scale.x = current / max; }; return self; }); // PollenParticle class var PollenParticle = Container.expand(function () { var self = Container.call(this); // Particle properties self.velocity = { x: 0, y: 0 }; self.lifespan = 1; // Goes from 1 to 0 self.decayRate = 0.02; // How fast the particle fades self.type = 'trail'; // Can be 'trail' or 'burst' // Create the visual element var assetMap = { 'trail': 'PollenSparkle', 'burst': 'Petal', 'fairy': 'PollenSparkle', 'transfer': 'PollenSparkle' }; var pollenGraphics; // Initialize with random properties for more organic feel self.init = function (type) { self.type = type || 'trail'; if (!pollenGraphics) { pollenGraphics = self.attachAsset(assetMap[self.type], { anchorX: 0.5, anchorY: 0.5 }); } // Set initial scale based on type if (self.type === 'trail') { self.scale.set(0.7 + Math.random() * 0.3); // Larger for trail self.decayRate = 0.03; // Faster decay for trail // Slight random velocity for trail movement self.velocity = { x: (Math.random() - 0.5) * 2, y: (Math.random() - 0.5) * 2 }; } else if (self.type === 'burst') { self.scale.set(0.5 + Math.random() * 0.3); // Smaller initial size for bursts self.decayRate = 0.01; // Slower decay for longer travel // Radial burst velocity var angle = Math.random() * Math.PI * 2; var speed = 3 + Math.random() * 5; // Increased speed for further travel self.velocity = { x: Math.cos(angle) * speed, y: Math.sin(angle) * speed }; } else if (self.type === 'fairy') { self.lifespan = undefined; // Don't fade out self.startAngle = Math.random() * Math.PI * 2; // Random start position self.orbitRadius = 20 + Math.random() * 40; // Increase orbit radius variation self.orbitSpeed = 0.005 + Math.random() * 0.03; // Increase orbit speed variation self.update = function () { var time = LK.ticks * self.orbitSpeed; // Orbit motion self.x = Math.cos(time + self.startAngle) * self.orbitRadius; self.y = Math.sin(time + self.startAngle) * self.orbitRadius; // Add bobbing self.y += Math.sin(time * 2 + self.startAngle) * 10; }; } // Random rotation speed self.rotationSpeed = (Math.random() - 0.5) * 0.2; // Random starting rotation self.rotation = Math.random() * Math.PI * 2; // Add random rotation speed for dynamic movement self.rotationSpeed = (Math.random() - 0.5) * 0.2; // Full opacity to start self.alpha = 1; if (self.type === 'transfer') { self.scale.set(0.5); self.alpha = 1; self.twinkleOffset = 0; // Initialize twinkle offset self.twinkleSpeed = 0.1; // Initialize twinkle speed self.update = function () { // Gentle drift down self.x += self.vx; self.y += self.vy; // Individual twinkle effect self.alpha = 0.6 + Math.sin(LK.ticks * self.twinkleSpeed + self.twinkleOffset) * 0.4; // Remove when below hive if (self.y > 100) { self.destroy(); } }; } return self; }; self.update = function () { // Update position based on velocity self.x += self.velocity.x; self.y += self.velocity.y; // Add rotation self.rotation += self.rotationSpeed; // Slow down velocity over time self.velocity.x *= 0.95; self.velocity.y *= 0.95; // Update lifespan and alpha self.lifespan -= self.decayRate; self.alpha = self.lifespan; // Scale slightly varies with life var scalePulse = 1 + Math.sin(LK.ticks * 0.2) * 0.1; pollenGraphics.scale.set(scalePulse * self.scale.x); // Remove when lifecycle complete if (self.lifespan <= 0) { self.destroy(); } }; }); // First, let's add a PollenTrail class to handle the dragging mechanic var PollenTrail = Container.expand(function () { var self = Container.call(this); self.points = []; self.active = false; self.currentGarden = null; // Store reference to garden self.MAX_SPEED = 15; // Adjust this value for proper feel self.startTrail = function (x, y, garden, bee) { self.active = true; self.points = [{ x: x, y: y, time: Date.now() }]; self.startTime = Date.now(); self.trailStartTime = Date.now(); self.currentGarden = garden; self.bee = bee; // Store bee reference self.lastPoint = { x: x, y: y }; // Initialize lastPoint // Force red on first particle to verify bee storage var particle = new PollenParticle().init('trail'); particle.children[0].tint = 0xFF0000; particle.x = x; particle.y = y; game.addChild(particle); }; self.updateTrail = function (x, y) { if (!self.active) { return; } // Enforce maximum speed var dx = x - self.lastPoint.x; var dy = y - self.lastPoint.y; var distance = Math.sqrt(dx * dx + dy * dy); if (distance > self.MAX_SPEED) { var ratio = self.MAX_SPEED / distance; x = self.lastPoint.x + dx * ratio; y = self.lastPoint.y + dy * ratio; } self.points.push({ x: x, y: y, time: Date.now() }); self.lastPoint = { x: x, y: y }; // Create particle effect along trail var particle = new PollenParticle().init('trail'); if (self.bee && self.bee.pollenTypes && self.bee.pollenTypes[0]) { if (self.bee.pollenTypes[0].color === 'red') { particle.children[0].tint = 0xFF0000; } else if (self.bee.pollenTypes[0].color === 'blue') { particle.children[0].tint = 0x0000FF; } else if (self.bee.pollenTypes[0].color === 'yellow') { particle.children[0].tint = 0xFFFF00; } } particle.x = x; particle.y = y; game.addChild(particle); }; // Add the burst effect function self.createPollenBurst = function (x, y) { for (var i = 0; i < 12; i++) { var particle = new PollenParticle().init('burst'); var angle = i / 12 * Math.PI * 2; var distance = 30; particle.x = x + Math.cos(angle) * distance; particle.y = y + Math.sin(angle) * distance; // Give particles outward velocity particle.vx = Math.cos(angle) * 3; particle.vy = Math.sin(angle) * 3; game.addChild(particle); } }; self.endTrail = function () { if (!self.active) { return; } var affectedBuds = []; var checkedPositions = {}; self.points.forEach(function (point) { var localPos = self.currentGarden.toLocal({ x: point.x, y: point.y }, game); var gridX = Math.floor(localPos.x / self.currentGarden.cellSize); var gridY = Math.floor(localPos.y / self.currentGarden.cellSize); var posKey = gridX + ',' + gridY; if (!checkedPositions[posKey] && gridX >= 0 && gridX < self.currentGarden.cols && gridY >= 0 && gridY < self.currentGarden.rows) { checkedPositions[posKey] = true; var gridItem = self.currentGarden.grid[gridY][gridX]; // Verify it's a valid bud if (gridItem && gridItem.isBud === true && gridItem.isFlower === false) { affectedBuds.push({ bud: gridItem, gridX: gridX, gridY: gridY }); } } }); if (affectedBuds.length >= 2) { affectedBuds.forEach(function (budInfo) { // IMPORTANT: Clear the grid position first self.currentGarden.grid[budInfo.gridY][budInfo.gridX] = null; // Remove the bud from display list self.currentGarden.removeChild(budInfo.bud); // Create new flower var newFlower = new BasicFlower(); newFlower.x = budInfo.bud.x; newFlower.y = budInfo.bud.y; newFlower.isFlower = true; // Update grid position and add to display list self.currentGarden.grid[budInfo.gridY][budInfo.gridX] = newFlower; self.currentGarden.addChild(newFlower); // Start bloom animation newFlower.bloom(); }); } self.active = false; self.points = []; }; self.update = function () { // Just update particles, no time checks // Update all children particles for (var i = self.children.length - 1; i >= 0; i--) { var particle = self.children[i]; if (particle && particle.update) { particle.update(); } } }; }); var PollenUI = Container.expand(function () { var self = Container.call(this); // Create cells with their fill indicators // Red cell and fill // Red cell initialization and position var redCell = LK.getAsset('pollenCellBase', { anchorX: 0.5, anchorY: 0.5, x: -300 // Set position in initialization }); redCell.tint = 0xFF0000; redCell.alpha = 0.4; self.addChild(redCell); self.redFill = LK.getAsset('pollenCellBase', { anchorX: 0.5, anchorY: 0, x: -300 // Set position in initialization }); self.redFill.tint = 0xFF0000; self.redFill.alpha = 0.7; self.redFill.y = 90; self.redFill.scale.y = 0; self.addChild(self.redFill); // Blue cell initialization and position var blueCell = LK.getAsset('pollenCellBase', { anchorX: 0.5, anchorY: 0.5, x: 0 // Set position in initialization }); blueCell.tint = 0x0000FF; blueCell.alpha = 0.4; self.addChild(blueCell); self.blueFill = LK.getAsset('pollenCellBase', { anchorX: 0.5, anchorY: 0, x: 0 // Set position in initialization }); self.blueFill.tint = 0x0000FF; self.blueFill.alpha = 0.7; self.blueFill.y = 90; self.blueFill.scale.y = 0; self.addChild(self.blueFill); // Yellow cell initialization and position var yellowCell = LK.getAsset('pollenCellBase', { anchorX: 0.5, anchorY: 0.5, x: 300 // Set position in initialization }); yellowCell.tint = 0xFFFF00; yellowCell.alpha = 0.4; self.addChild(yellowCell); self.yellowFill = LK.getAsset('pollenCellBase', { anchorX: 0.5, anchorY: 0, x: 300 // Set position in initialization }); self.yellowFill.tint = 0xFFFF00; self.yellowFill.alpha = 0.7; self.yellowFill.y = 90; self.yellowFill.scale.y = 0; self.addChild(self.yellowFill); // Add update method self.updatePollen = function (color, amount, max) { var fillAmount = Math.min(amount / max, 1); if (color === 'red') { self.redFill.scale.y = fillAmount; self.redFill.y = 90 - 180 * fillAmount; // Start at 90, move up as it fills } else if (color === 'blue') { self.blueFill.scale.y = fillAmount; self.blueFill.y = 90 - 180 * fillAmount; } else if (color === 'yellow') { self.yellowFill.scale.y = fillAmount; self.yellowFill.y = 90 - 180 * fillAmount; } }; return self; }); // Add ScoreManager to handle chain reactions and scoring var ScoreManager = Container.expand(function () { var self = Container.call(this); self.currentScore = 0; self.currentChain = 0; self.chainMultiplier = 1; self.addToChain = function () { self.currentChain++; self.chainMultiplier = Math.min(1 + self.currentChain * 0.5, 5); // Cap at 5x self.addScore(100 * self.chainMultiplier); }; self.resetChain = function () { self.currentChain = 0; self.chainMultiplier = 1; }; self.addScore = function (points) { self.currentScore += Math.floor(points); // Update score display if (game.scoreDisplay) { game.scoreDisplay.text = self.currentScore.toString(); } }; }); var SourceFlower = Container.expand(function (color) { var self = Container.call(this); // Store flower color self.color = color; self.isSourceFlower = true; // Flag to identify source flowers // Map color to asset name var assetMap = { 'red': 'RedFlower', 'blue': 'BlueFlower', 'yellow': 'YellowFlower' }; // Create flower sprite var flowerGraphics = self.attachAsset(assetMap[self.color], { anchorX: 0.5, anchorY: 0.5 }); // Source flowers always have pollen self.hasActivePollen = true; self.fairyParticles = []; self.FAIRY_COUNT = 3; // Initialize fairy particles for (var i = 0; i < self.FAIRY_COUNT; i++) { var fairy = new PollenParticle().init('fairy'); fairy.scale.set(0.3 + Math.random() * 0.2); fairy.x += (Math.random() - 0.5) * 60; fairy.y += (Math.random() - 0.5) * 60; fairy.rotation = Math.random() * Math.PI * 2; fairy.rotationSpeed = (Math.random() - 0.5) * 0.2; self.addChild(fairy); self.fairyParticles.push(fairy); } // Gentle animation self.update = function () { var scaleFactor = 1 + Math.sin(LK.ticks * 0.1) * 0.05; flowerGraphics.scale.x = scaleFactor; flowerGraphics.scale.y = scaleFactor; flowerGraphics.rotation = Math.sin(LK.ticks * 0.1) * 0.05; // Update fairy particles self.fairyParticles.forEach(function (fairy) { if (fairy && fairy.update) { fairy.update(); } }); }; // Override collection behavior - source flowers regenerate pollen immediately self.pollenCollected = false; self.resetPollen = function () { self.hasActivePollen = true; self.pollenCollected = false; }; self.collectPollen = function () { // Reset immediately to allow continuous collection self.hasActivePollen = true; self.pollenCollected = false; }; return self; }); // Level display class var LevelDisplay = Text2.expand(function () { var self = Text2.call(this, 'Level 1', { size: 150, fill: 0xFFFFFF }); }); // Score display class var ScoreDisplay = Text2.expand(function () { var self = Text2.call(this, '0', { size: 150, fill: 0xFFFFFF }); }); /**** * Initialize Game ****/ var game = new LK.Game({ backgroundColor: 0x000000 //Init game with black background }); /**** * Game Code ****/ // Declare and initialize flowerManager in global scope function _slicedToArray2(r, e) { return _arrayWithHoles2(r) || _iterableToArrayLimit2(r, e) || _unsupportedIterableToArray2(r, e) || _nonIterableRest2(); } function _nonIterableRest2() { throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _iterableToArrayLimit2(r, l) { var t = null == r ? null : "undefined" != typeof Symbol && r[Symbol.iterator] || r["@@iterator"]; if (null != t) { var e, n, i, u, a = [], f = !0, o = !1; try { if (i = (t = t.call(r)).next, 0 === l) { if (Object(t) !== t) { return; } f = !1; } else { for (; !(f = (e = i.call(t)).done) && (a.push(e.value), a.length !== l); f = !0) { ; } } } catch (r) { o = !0, n = r; } finally { try { if (!f && null != t["return"] && (u = t["return"](), Object(u) !== u)) { return; } } finally { if (o) { throw n; } } } return a; } } function _arrayWithHoles2(r) { if (Array.isArray(r)) { return r; } } function _createForOfIteratorHelper2(r, e) { var t = "undefined" != typeof Symbol && r[Symbol.iterator] || r["@@iterator"]; if (!t) { if (Array.isArray(r) || (t = _unsupportedIterableToArray2(r)) || e && r && "number" == typeof r.length) { t && (r = t); var _n2 = 0, F = function F() {}; return { s: F, n: function n() { return _n2 >= r.length ? { done: !0 } : { done: !1, value: r[_n2++] }; }, e: function e(r) { throw r; }, f: F }; } throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } var o, a = !0, u = !1; return { s: function s() { t = t.call(r); }, n: function n() { var r = t.next(); return a = r.done, r; }, e: function e(r) { u = !0, o = r; }, f: function f() { try { a || null == t["return"] || t["return"](); } finally { if (u) { throw o; } } } }; } function _unsupportedIterableToArray2(r, a) { if (r) { if ("string" == typeof r) { return _arrayLikeToArray2(r, a); } var t = {}.toString.call(r).slice(8, -1); return "Object" === t && r.constructor && (t = r.constructor.name), "Map" === t || "Set" === t ? Array.from(r) : "Arguments" === t || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(t) ? _arrayLikeToArray2(r, a) : void 0; } } function _arrayLikeToArray2(r, a) { (null == a || a > r.length) && (a = r.length); for (var e = 0, n = Array(a); e < a; e++) { n[e] = r[e]; } return n; } function _slicedToArray(r, e) { return _arrayWithHoles(r) || _iterableToArrayLimit(r, e) || _unsupportedIterableToArray(r, e) || _nonIterableRest(); } function _nonIterableRest() { throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _iterableToArrayLimit(r, l) { var t = null == r ? null : "undefined" != typeof Symbol && r[Symbol.iterator] || r["@@iterator"]; if (null != t) { var e, n, i, u, a = [], f = !0, o = !1; try { if (i = (t = t.call(r)).next, 0 === l) { if (Object(t) !== t) { return; } f = !1; } else { for (; !(f = (e = i.call(t)).done) && (a.push(e.value), a.length !== l); f = !0) { ; } } } catch (r) { o = !0, n = r; } finally { try { if (!f && null != t["return"] && (u = t["return"](), Object(u) !== u)) { return; } } finally { if (o) { throw n; } } } return a; } } function _arrayWithHoles(r) { if (Array.isArray(r)) { return r; } } function _createForOfIteratorHelper(r, e) { var t = "undefined" != typeof Symbol && r[Symbol.iterator] || r["@@iterator"]; if (!t) { if (Array.isArray(r) || (t = _unsupportedIterableToArray(r)) || e && r && "number" == typeof r.length) { t && (r = t); var _n = 0, F = function F() {}; return { s: F, n: function n() { return _n >= r.length ? { done: !0 } : { done: !1, value: r[_n++] }; }, e: function e(r) { throw r; }, f: F }; } throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } var o, a = !0, u = !1; return { s: function s() { t = t.call(r); }, n: function n() { var r = t.next(); return a = r.done, r; }, e: function e(r) { u = !0, o = r; }, f: function f() { try { a || null == t["return"] || t["return"](); } finally { if (u) { throw o; } } } }; } function _unsupportedIterableToArray(r, a) { if (r) { if ("string" == typeof r) { return _arrayLikeToArray(r, a); } var t = {}.toString.call(r).slice(8, -1); return "Object" === t && r.constructor && (t = r.constructor.name), "Map" === t || "Set" === t ? Array.from(r) : "Arguments" === t || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(t) ? _arrayLikeToArray(r, a) : void 0; } } function _arrayLikeToArray(r, a) { (null == a || a > r.length) && (a = r.length); for (var e = 0, n = Array(a); e < a; e++) { n[e] = r[e]; } return n; } var flowerManager = new FlowerManager(); var titleScreen = new Container(); var background = LK.getAsset('titlebackground', { anchorX: 0.5, anchorY: 0.5, x: 2048 / 2, y: 2732 / 2 }); titleScreen.addChild(background); var logo = LK.getAsset('logo', { anchorX: 0.5, anchorY: 0.5, x: 2048 / 2, y: 2732 / 2 }); titleScreen.addChild(logo); var playButton = LK.getAsset('playButton', { anchorX: 0.5, anchorY: 0.5, x: 2048 / 2, y: 2732 / 2 + 200 }); titleScreen.addChild(playButton); var tutorialButton = LK.getAsset('tutorialButton', { anchorX: 0.5, anchorY: 0.5, x: 2048 / 2, y: 2732 / 2 + 400 }); titleScreen.addChild(tutorialButton); game.addChild(titleScreen); playButton.down = function (x, y, obj) { game.removeChild(titleScreen); var gardenBackground = new GardenBackground(); game.addChild(gardenBackground); garden = new Garden(); garden.init(); game.addChild(garden); var flowerManager = new FlowerManager(); game.flowerMatcher = new FlowerMatcher(); game.addChild(game.flowerMatcher); var pollenTrail = new PollenTrail(); game.addChild(pollenTrail); // Create and position hive var hive = new Hive(); hive.x = 2048 / 2; hive.y = 2732 * 0.97 - 200; // Create bee and position above hive var bee = new Bee(); bee.x = hive.x; bee.y = hive.y - 150; // Create UI and attach to game object so it's globally accessible game.beeUI = new PollenUI(); game.beeUI.position.set(hive.x - 600, hive.y + 100); game.beeUI.scale.set(0.8); game.addChild(game.beeUI); game.hiveUI = new PollenUI(); game.hiveUI.position.set(hive.x + 600, hive.y + 100); game.addChild(game.hiveUI); // Add objects to game game.addChild(hive); game.addChild(bee); // Ensure pollen particles are rendered on top by adding them last game.setChildIndex(pollenTrail, game.children.length - 1); // Initialize bud spawner garden.budSpawner = new BudSpawner(); garden.budSpawner.init(garden); game.addChild(garden.budSpawner); // Touch handlers game.down = function (x, y, obj) { bee.isMoving = true; bee.targetX = x; bee.targetY = y; }; game.move = function (x, y, obj) { if (bee.isMoving) { bee.targetX = x; bee.targetY = y - 200; } }; game.up = function (x, y, obj) { bee.isMoving = false; }; // Initialize score display var scoreDisplay = new ScoreDisplay(); scoreDisplay.anchor.set(0.5, 0); LK.gui.top.addChild(scoreDisplay); game.scoreDisplay = scoreDisplay; // Add the main update loop game.update = function () { // Update spawning system if (game.budSpawner) { game.budSpawner.update(); } // Update trail system if (pollenTrail) { pollenTrail.update(); } // Update garden elements if (garden) { // Update all flowers and buds in the grid for (var i = 0; i < garden.rows; i++) { for (var j = 0; j < garden.cols; j++) { var gridItem = garden.grid[i][j]; if (gridItem && gridItem.update) { gridItem.update(); } } } } // Update all children that have update methods for (var i = 0; i < game.children.length; i++) { var child = game.children[i]; if (child && child.update) { child.update(); } } // Update all particles if (game.particlesToUpdate) { for (var i = game.particlesToUpdate.length - 1; i >= 0; i--) { var particle = game.particlesToUpdate[i]; if (particle && particle.update) { particle.update(); } } } // Update bee if (bee && bee.update) { bee.update(); // Collision detection between bee and hive if (hive) { var dx = bee.x - hive.x; var dy = bee.y - hive.y; var distance = Math.sqrt(dx * dx + dy * dy); if (distance < 100) { // Adjust collection radius as needed hive.collectFromBee(bee); } } } }; }; tutorialButton.down = function (x, y, obj) { // Open tutorial }; // Removed duplicate playPollenPatternAnimation method self.updateWarningEffects = function () { var timeProgress = (180 - self.warningTime) / 180; // 0 to 1 var intensity = Math.sin(timeProgress * Math.PI * 4) * 0.5 + 0.5; // Pulsing effect self.warningSprites.forEach(function (sprite) { // Increase glow and intensity as spawn time approaches sprite.children[0].alpha = 0.3 + intensity * 0.7; sprite.children[0].scale.set(0.8 + intensity * 0.4); // Add subtle shake when close to spawning if (self.warningTime < 60) { // Last second sprite.x += (Math.random() - 0.5) * 2; sprite.y += (Math.random() - 0.5) * 2; } }); };
===================================================================
--- original.js
+++ change.js
@@ -1647,5 +1647,20 @@
};
tutorialButton.down = function (x, y, obj) {
// Open tutorial
};
-// Removed duplicate playPollenPatternAnimation method
\ No newline at end of file
+// Removed duplicate playPollenPatternAnimation method
+self.updateWarningEffects = function () {
+ var timeProgress = (180 - self.warningTime) / 180; // 0 to 1
+ var intensity = Math.sin(timeProgress * Math.PI * 4) * 0.5 + 0.5; // Pulsing effect
+ self.warningSprites.forEach(function (sprite) {
+ // Increase glow and intensity as spawn time approaches
+ sprite.children[0].alpha = 0.3 + intensity * 0.7;
+ sprite.children[0].scale.set(0.8 + intensity * 0.4);
+ // Add subtle shake when close to spawning
+ if (self.warningTime < 60) {
+ // Last second
+ sprite.x += (Math.random() - 0.5) * 2;
+ sprite.y += (Math.random() - 0.5) * 2;
+ }
+ });
+};
\ No newline at end of file
A background image for a puzzle video game depicting the season of summer. Cartoon. Single Game Texture. In-Game asset. 2d. Blank background. High contrast. No shadows.
A background image for a puzzle video game depicting the season of fall. Cartoon. Single Game Texture. In-Game asset. 2d. Blank background. High contrast. No shadows.
A background image for a puzzle video game depicting the season of winter. Cartoon. Single Game Texture. In-Game asset. 2d. Blank background. High contrast. No shadows.
Multiple stylized texts with phrases that include “Hurry!” “Time’s up!” Cartoon style.. Single Game Texture. In-Game asset. 2d. Blank background. High contrast. No shadows.
Create a SVG text design in bold cartoon style: "SPRING" in chunky rounded letters with floral accents and vines. Use spring pastels.. Single Game Texture. In-Game asset. 2d. Blank background. High contrast. No shadows.
Create an SVG text design for "SUMMER" in bold cartoon style with chunky rounded letters. Add sun rays and small flower details in warm, vibrant colors.. Single Game Texture. In-Game asset. 2d. Blank background. High contrast. No shadows.
Create an SVG text design for "FALL" in bold cartoon style with chunky rounded letters. Add small falling leaves and acorn accents in warm autumn colors.. Single Game Texture. In-Game asset. 2d. Blank background. High contrast. No shadows.
Create an SVG text design for "WINTER" in bold cartoon style with chunky rounded letters. Add small snowflake accents and icy details in cool, frosty blues and white.. Single Game Texture. In-Game asset. 2d. Blank background. High contrast. No shadows.
Create a SVG text design in bold cartoon style: “Bloom the garden" in chunky rounded letters with floral accents and vines. Use spring pastels.. Single Game Texture. In-Game asset. 2d. Blank background. High contrast. No shadows.
Create an SVG text design for "Match the blooms" in bold cartoon style with chunky rounded letters. Add sun rays and small flower details in warm, vibrant colors.. Single Game Texture. In-Game asset. 2d. Blank background. High contrast. No shadows.
Create an SVG text design for "Match to clear leaves" in bold cartoon style with chunky rounded letters. Add small falling leaves and acorn accents in warm autumn colors.. Single Game Texture. In-Game asset. 2d. Blank background. High contrast. No shadows.
Create an SVG text design for "DANCE TO STAY WARM" in bold cartoon style with chunky rounded letters. Add small snowflake accents and icy details in cool, frosty blues and white.. Single Game Texture. In-Game asset. 2d. Blank background. High contrast. No shadows.
Create a SVG text design in bold cartoon style: "SEASON COMPLETE!" in chunky rounded letters with stars around it . Single Game Texture. In-Game asset. 2d. Blank background. High contrast. No shadows.